
MULTIPLICITY CONJECTURES

CHRISTOPHER A. FRANCISCO AND HEMA SRINIVASAN

1. Introduction

Let S = k[x1, x2, . . . , xn] be the polynomial ring in n variables over a field
k and m = (x1, . . . , xn) the irrelevant maximal ideal. Let I be an ideal of S
minimally generated by homogenous polynomials f1, f2, . . . , ft in S. Then S/I has
homogenous or graded resolution F over S given by

0 →
bn⊕

j=1

S(−dnj)
δn→· · · →

bi⊕
j=1

S(−dij)
δi→· · · →

b1=t⊕
j=1

S(−d1j)
δ1→S.

The numbers dij come from the degrees of the homogeneous polynomials in the
maps in the resolution. Thus, the numbers d1j , j = 1, . . . , n are simply the degrees
of the generators fj , j = 1, . . . , n of the ideal I. Much information about S/I can
be recovered from the shifts in the resolution. For instance, the height of the ideal
I is the smallest positive integer t such that

∑n
i=1

∑
j(−1)idt

ij 6= 0. Thus,
n∑

i=1

∑
j

(−1)idt
ij =

{
0 1 ≤ t ≤ h− 1
(−1)hh!e(S/I) t = h.

Such a resolution F is called minimal if δ(F) ⊂ mF; that is, δi(Fi) ⊂ mFi−1, for all
i. Let Fmin be the minimal homogenous resolution with the corresponding shifts
dij . Let mi = minj≥0{dij} be the minimal shifts, and Mi = maxj≥0{dij} be the
maximal shifts in the resolution. Then conjectures of Huneke-Herzog-Srinivasan
state:

Conjecture 1.1. Let h be the height of I.
(a) Suppose that S/I is Cohen-Macaulay (and thus h is also the projective

dimension of S/I). Then the multiplicity e of S/I satisfies

1
h!

h∏
i=1

mi ≤ e ≤ 1
h!

h∏
i=1

Mi.

(b) (Herzog-Srinivasan) Even if S/I is not Cohen-Macaulay, the multiplicity e
of S/I satisfies

e ≤ 1
h!

h∏
i=1

Mi.

(We use “height” and “codimension” interchangeably throughout.) One can
replace the maximal and minimal shifts by the ones coming from a nonminimal
resolution. The bounds then will be weaker than the one from the minimal resolu-
tion. When I is a monomial ideal, there is a natural nonminimal resolution called
the Taylor resolution for S/I. We will call the upper bound coming from this the
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Taylor bound for the multiplicity. The minimal bound does not change. Let Li

denote the maximal shifts in the Taylor resolution of S/I. So, we have another
conjecture:

Conjecture 1.2. (Herzog-Srinivasan) Suppose that h = height of I. Then the mul-
tiplicity e of S/I satisfies

e ≤ 1
h!

h∏
i=1

Li.

In this article, we will give a brief history with outlines of proofs of the vari-
ous results arising from a study of these conjectures. The simplest case in which
Conjecture 1.1 is not yet known is for height three Cohen-Macaulay ideals.

A resolution F is called a pure resolution if there is only one shift in every degree.
In other words, S/I has a pure resolution if mi = Mi for all i. When S/I is Cohen-
Macaulay and has a pure resolution of length h, a formula of Huneke and Miller
[Huneke-Miller] computes the multiplicity as the product of the shifts divided by
h!. Conjecture 1.1(a) was born while revisiting this formula with a different proof.
It is not that difficult to verify the conjecture for the codimension two case which
gave the conjecturers some strength. As the article shows, these simple numerical
bounds for the multiplicity have not been easy to settle and are still largely open.

2. Quasipure resolutions

Let R be a standard graded algebra and I a homogeneous ideal. Let the minimal
homogeneous resolution F of R/I over R be given by

0 →
bn⊕

j=1

R(−dnj)
δn→· · · →

bi⊕
j=1

R(−dij)
δi→· · · →

b1=t⊕
j=1

R(−d1j)
δ1→R.

Lemma 2.1. [Peskine-Szpiro] Let R, I and F be as above. Then if h is the height
of I, ∑n

i=1 bj(−1)idk
ij = −1, k = 0

= 0, 1 ≤ k < h
= (−1)nh!e k = h

Proof. Since the complex F is exact, the alternating sum of the ranks of the free
modules must be zero. So, we get

∑n
i=1 bj(−1)idijk + 1 = 0.

The Hilbert series of R/I is given by
∑n

i=1 bij(−1)ixdij = (1− x)hP (x) , where
P (x) is the Hilbert Polynomial. By differentiating and evaluating at x = 1, we get,∑n

i=1 bj(−1)i
(
dij

t

)
= 0, 1 ≤ t < h
= (−1)nh!e t = h

Using the fact that t!
(
dij

t

)
is a polynomial of degree t in dij and hence the dt

ij

can be written as sums of multiples of
(
dij

k

)
, k < t, we get the result. �

Recall that a resolution F is called a pure resolution if there is only one shift in
every degree. Thus, R/I has a pure resolution if mi = Mi for all i. We will call a
resolution quasipure if mi ≥ Mi−1 for all i. Now we will use the above equations
to prove:
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Theorem 2.2. [Herzog-Srinivasan1998] Let R be a standard graded ring and I
be a homogeneous ideal of R such that R/I is Cohen-Macaulay with a quasipure
resolution. Let Mi, 1 ≤ i ≤ n, and mi, 1 ≤ i ≤ n, be the maximal and minimal shifts
respectively in the minimal homogeneous resolution of R/I. Then the multiplicity
e(R/I) satisfies

∏
mi ≤ n!e ≤

∏
Mi.

Proof. Let F, given by

0 →
bn⊕

j=1

R(−dnj)
δn→· · · →

bi⊕
j=1

R(−dij)
δi→· · · →

b1=t⊕
j=1

R(−d1j)
δ1→R,

be the minimal resolution of R/I over R. Since R/I is Cohen-Macaulay, n is the
height of I. Let mi and Mi denote the minimal and maximal shifts respectively at
the ith place in the resolution. By Peskine and Szpiro [Peskine-Szpiro], we see that∑n

i=1 bj(−1)idk
ij = −1, k = 0

= 0, 1 ≤ k < n
= (−1)nh!e k = n.

Now consider the n× n matrix

T (n) =



∑
j d1j · · ·

∑
j dij · · ·

∑
j dnj

...
...

...
...

...∑
j dk

1j · · ·
∑

j dk
ij · · ·

∑
j dk

nj

...
...

...
...

...∑
j dn

1j · · ·
∑

j dn
ij · · ·

∑
j dn

nj


We compute the determinant of T (n) in two different ways. First, we perform

the column operations of adding (−1)n+i times the ith column to the last column,
for each i. Then using

∑n
i=1 bj(−1)idk

ij = 0, 1 ≤ k < h, we get the determinant of
T ,

det(T ) = det



∑
j d1j · · ·

∑
j dij · · · 0

...
...

...
...

...∑
j dk

1j · · ·
∑

j dk
ij · · · 0

...
...

...
...

...∑
j dn

1j · · ·
∑

j dn
ij · · · n!e

 = n!edetQ,

where

Q =



∑
j d1j · · ·

∑
j dij · · ·

∑
j dn−1,j

...
...

...
...

...∑
j dk

1j · · ·
∑

j dk
ij · · ·

∑
j dk

n−1,j

...
...

...
...

...∑
j dn−1

1j · · ·
∑

j dn−1
ij · · ·

∑
j dn−1

n−1,j

 .

On the other hand, since the resolution is quasipure, for any i, j,

mi ≤ dij ≤ Mi ≤ mi+1 ≤ di+1,j ≤ Mi+1.
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If V (a1, . . . , an) denotes the Vandermonde matrix

1 · · · 1 · · · 1
...

...
...

...
...

ak
1 · · · ak

i · · · ak
n

...
...

...
...

...
an
1 · · · an

i · · · an
n


then V (d1j1 , . . . , dnjn

) is positive for any j1, . . . , jn. Hence decomposing the deter-
minant T by Vandermonde determinants, we get

det(T (n)) =
∑

ji<bi

d1j1 .. · · · dnjjnV (d1jj1 , . . . , dnjn
).

Now since the resolution is quasipure, diji ≥ dtjt , i > t. So, all the Vandermonde
determinants V (d1j1 , . . . , dnjn

) ≥ 0. Hence estimating dij , and summing up the
Vandermonde determinants again, we get

n∏
i=1

mi detL ≤ detT ≤
n∏

i=1

Mi detL,

where

L =



b1 · · · bj · · · bn

...
...

...
...

...∑
j dk

1j · · ·
∑

j dk
ij · · ·

∑
j dk

ij

...
...

...
...∑

j dn−1
1j · · ·

∑
j dn−1

ij · · ·
∑

j dn−1
nj

 .

But the same column operations we performed on T , we can repeat now on L with

the result that the last column becomes


(−1)n+1

0
...
0

 . Hence the determinant of L is

det L = (−1)2n+2 detQ. Putting these two together, we get the desired inequality,
because det Q, whatever it is, is certainly not zero for otherwise, the determinant
of T would be zero, which is impossible. �

As a corollary to this proof, we get a quick proof of the Huneke-Miller formula.
The matrix Q in this case is a Vandermonde matrix once we divide each column
by the corresponding Betti number bi. Thus

detQ =
∏

i

di

∏
i

biV (d1, . . . , dn) =
∏

i

di

n−1∏
i=1

bidiV (d1, . . . , dn−1) =

n!e
n−1∏
i=1

bi

n−1∏
i=1

diV (d1, . . . , dn−1).

Since d1, . . . , dn are all distinct and increasing, we see that n!e =
∏

i di.
The above proof also shows that it is necessary to have the Cohen-Macaulay

hypothesis to get the lower bound. In the best possible case, let us say, we have
an ideal of height n with a pure resolution of length n + 1 with the shifts, d1 <
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d2 < · · · < dn+1. Thus it fails to be Cohen-Macaulay only by having the length
of its resolution just one more than its height, and it has a pure resolution. We
follow the same proof as above and add one more row to Q by adding the d0

i as
the first row; we will have an (n + 1) × (n + 1) essentially Vandermonde matrix.
By taking its determinant in two ways, we get n!e =

∏n
i=1 di −

∏n
i=1(dn+1 − di).

This is strictly less than the product of the shifts di. The upper bound, however, is
clearly true since we get n!e ≤

∏n
i=1 di. Hence when R/I is not Cohen-Macaulay,

the upper bound conjecture states that if R/I has height h and multiplicity e, then
h!e ≤

∏h
i=1 Mi.

This upper bound has been proven for ideals with a q-linear resolution, which is
a pure resolution, even when the ideals are not Cohen-Macaulay. The multiplicity
of e(R/I) and the equations are unaltered if we did not change the Hilbert function.
Using this notion, and modifying the above proof, it can be shown that the conjec-
tured bounds hold for algebras with almost pure resolution [Herzog-Srinivasan1998].

3. Low codimension

In this section, we survey what is known about Conjecture 1.1 in codimension
two and three. The low codimension gives us some extra structure that allows
us to write down minimal resolutions more explicitly. Our goal in this section is
to describe what cases are known, give a few examples of those cases, and briefly
survey the different methods of proof. Throughout, let S = k[x1, . . . , xn].

3.1. Codimension two, Cohen-Macaulay. We begin with the Cohen-Macaulay
codimension two case, where the Hilbert-Burch Theorem tells exactly what the
minimal graded free resolution looks like. Suppose I ⊂ S is a homogeneous ideal
of codimension two such that S/I is Cohen-Macaulay. The minimal graded free
resolution of S/I has the form

0 →
t−1⊕
i=1

S(−bi)
φ→

t⊕
i=1

S(−ai) → S → S/I → 0.

See, for example, [Eisenbud]. We assume that the ai, the degrees of minimal gen-
erators of I, and the bi, the degrees of minimal first syzygies on those generators,
are weakly increasing, so a1 ≤ · · · ≤ at and b1 ≤ · · · ≤ bt−1. In terms of the ai and
bi, we have m1 = a1, M1 = at, m2 = b1, and M2 = bt−1.

To prove Conjecture 1.1 in this case, it is useful to have a way to express the mi,
Mi, and multiplicity in terms of the degrees of the syzygy matrix φ. For all i and
j (where this formula makes sense), let uij = bi − aj . Then the (transpose of the)
matrix (uij) gives the degrees of the entries of the syzygy matrix φ, where we allow
zero to have any degree. Let ui = uii, and let vi = ui,i+1. We have the following
formulas from [Herzog-Trung-Valla].

Lemma 3.1. (Herzog-Trung-Valla) With the notation above,
(1) a1 = v1 + · · ·+ vt−1 and at = u1 + · · ·+ ut−1.
(2) b1 = v1 + · · ·+ vt−1 + u1 and bt−1 = u1 + · · ·+ ut−1 + vt−1.

(3) e(S/I) =
t−1∑
i=1

ui(vi + · · ·+ vt−1).
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Example 3.2. Let I = (a3, a2b, b4) ⊂ R = k[a, b]. The minimal graded free
resolution of R/I is:

0 → R(−4)⊕R(−6)

0
BB@
−b 0
a −b3

0 a2

1
CCA

−→ R(−3)2 ⊕R(−4)

�
a3 a2b b4

�

−→ R → R/I → 0

In this case, we have a1 = a2 = 3, a3 = 4, b1 = 4, and b2 = 6. Therefore
u1 = b1 − a1 = 1, u2 = b2 − a2 = 3, v1 = b1 − a2 = 1, and v2 = b2 − a3 = 2.

The formulas of Lemma 3.1 are easy to verify: a1 = 3 = 1 + 2, a3 = 4 = 1 + 3,
b1 = 4 = 1 + 2 + 1, and b2 = 6 = 1 + 3 + 2. Note that the Hilbert function of R/I
is (1, 2, 3, 2, 1), so e(R/I) = 9. The formula from Lemma 3.1 for the multiplicity
gives

e(R/I) = u1(v1 + v2) + u2v2 = 1(1 + 2) + 3(2) = 3 + 6 = 9.

Because
6 =

1
2
(3 · 4) ≤ e(R/I) = 9 ≤ 1

2
(4 · 6) = 12,

R/I satisfies Conjecture 1.1.

Making some careful computations using these formulas, Herzog and Srinivasan
prove the following result in [Herzog-Srinivasan1998].

Theorem 3.3. (Herzog-Srinivasan) Let I ⊂ S = k[x1, . . . , xn] be an ideal of codi-
mension two such that S/I is Cohen-Macaulay. Then S/I satisfies the bounds of
Conjecture 1.1; that is, in the notation above,

1
2
a1b1 ≤ e(R/I) ≤ 1

2
atbt−1.

The bound of Theorem 3.3 is sharp in the sense that if S/I has a pure resolution,
the multiplicity is equal to the conjectured bounds. In Example 3.2, however, there
is some room between the multiplicity and the bounds. Recently, Migliore, Nagel,
and Römer proved a stronger version of Theorem 3.3 in [Migliore-Nagel-Römer].
Their argument is a refinement of the analysis in the proof of Theorem 3.3 in
[Herzog-Srinivasan1998].

Theorem 3.4. (Migliore-Nagel-Römer) Let I ⊂ S = k[x1, . . . , xn] be an ideal of
codimension two such that S/I is Cohen-Macaulay. Then

e(S/I) ≥ 1
2
m1m2 +

1
2
(M2 −M1)(M2 −m2 + M1 −m1)

and
e(S/I) ≤ 1

2
M1M2 −

1
2
(m2 −m1)(M2 −m2 + M1 −m1).

In Example 3.2, Theorem 3.4 provides stronger bounds for the multiplicity. The
new lower bound of 9 is sharp in this case, and the new upper bound is 10.5, which
is better than the previous bound of 12.

We have an easy corollary to Theorem3.4 that says that the bounds of Theo-
rem 3.3 are sharp if and only if S/I has a pure resolution.

Corollary 3.5. (Migliore-Nagel-Römer) Let I be a homogeneous ideal of codimen-
sion two in S = k[x1, . . . , xn] such that S/I is Cohen-Macaulay. Then the following
are equivalent:

(1) S/I has a pure resolution.
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(2) e(S/I) = 1
2m1m2.

(3) e(S/I) = 1
2M1M2.

Migliore, Nagel, and Römer also give a second proof of Theorem 3.4 in their
paper [Migliore-Nagel-Römer]. They analyze the degree matrix in the minimal
graded free resolution of S/I, and, using linkage and an induction argument on
the number of minimal generators of I, arrive at the same result. The proof is
similar to their argument in the Gorenstein codimension three case we shall discuss
later in this section. See Section 2 of [Migliore-Nagel-Römer] for the details and a
discussion of some ideas for an appropriate lower bound in the non-Cohen-Macaulay
codimension two case.

3.2. Codimension two, not Cohen-Macaulay. We turn next to the case in
which codim I = 2 but S/I is not Cohen-Macaulay. Of course, we cannot expect
the lower bound of Conjecture 1.1 to hold in the non-Cohen-Macaulay case, so we
consider only the upper bound. The first development on this problem came in
work of Gold [Gold] in which she solved the codimension two lattice ideal case. We
give a brief overview of her work here.

Let L be a lattice in Zn. Given a vector b = (b1, . . . , bn) with nonnegative integer
entries, let xb = xb1

1 · · ·xbn
n . A lattice ideal is an ideal

IL = (xa+ − xa− |a ∈ L),

where a+ is ai in coordinate i if ai > 0 and zero otherwise, and a− is |ai| in
component i if ai < 0 and zero otherwise.

Peeva and Sturmfels constructed a minimal (multigraded) free resolution for IL
when its codimension is two [Peeva-Sturmfels], and Gold exploits this structure
to prove the upper bound of Conjecture 1.1 in this case. Essentially, Peeva and
Sturmfels show that for each multidegree in which there is a minimal syzygy in the
resolution, there exists a particular polytope. Moreover, each first syzygy corre-
sponds to a line segment, each second syzygy corresponds to a triangle, and each
third syzygy corresponds to a quadrangle, so the progression is systematic.

To prove the upper bound of Conjecture 1.1 for IL, Gold first proves it for
certain four-generated subideals J of IL. She does a careful analysis of equalities
derived from the fact that the syzygies in the resolution are homogeneous, which
gives relations on the exponents of the terms of the minimal generators. One wants
to show that the expression M

S/J
1 M

S/J
2 − 2e(S/J) is nonnegative, and there are

four cases to consider depending on which syzygies have maximal degree. Gold
illustrates one in [Gold], and the others are similar.

Passing from the result for S/J to the bound for S/IL is then easy. Because the
minimal generators of J are also minimal generators of IL, it is obvious that M

S/J
1 ≤

M
S/IL
1 . Additionally, Peeva and Sturmfels show that when S/IL is not Cohen-

Macaulay, the minimal resolution of S/IL is comprised of a sum of resolutions of
ideals S/J . Hence minimal syzygies in the resolution of S/J are minimal syzygies
in the resolution of S/IL, and thus M

S/J
2 ≤ M

S/IL
2 . Because J ⊂ IL, e(S/IL) ≤

e(S/J), the result follows.

Theorem 3.6. (Gold) Let IL ⊂ S = k[x1, . . . , xn] be a codimension two lattice
ideal. Then

e(S/IL) ≤ 1
2
M1M2.
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Except for some cases discussed in Section 4, Gold’s result was the only case of
Conjecture 1.1 known in the non-Cohen-Macaulay case when she proved it. In 2003,
however, Römer proved the upper bound of Conjecture 1.1 for all codimension two
ideals I in which S/I is not Cohen-Macaulay, which completed the codimension two
case. Römer’s approach is to reduce the problem to dimension zero using the idea of
almost regular elements. Let R = S/I. An element y ∈ R1 is called almost regular
if (0 :R y)d = 0 for all d � 0. Similarly, a sequence of elements y1, . . . , ys ∈ R1

is an almost regular sequence if yi is almost regular for R/(y1, . . . , yi−1)R for
each i. It is easy to prove the following:

Lemma 3.7. Let I be a homogeneous ideal of codimension two in S, and let R =
S/I.

(1) If y1, . . . , yn−2 ∈ R1 is an almost regular sequence, then R/(y1, . . . , yn−2)R
has dimension zero.

(2) e(R) ≤ e(R/(y1, . . . , yn−2)R).

Let R̃ = R/(y1, . . . , yn−2)R. Then, by Lemma 3.7, we have dim R̃ = 0 and
e(R) ≤ e(R̃). Since dim R̃ = 0, R̃ is Cohen-Macaulay. Moreover, R̃ is the poly-
nomial ring S̃ = S/(y1, . . . , yn)S mod the ideal Ĩ = (I + (y1, . . . , yn))/(y1, . . . , yn).
Consequently, because the upper bound holds for codimension two ideals in the
Cohen-Macaulay case, e(R̃) ≤ 1

2M̃1M̃2, where the M̃i are the maximum degrees of
minimal syzygies of S̃/Ĩ over S̃.

Thus, if Mi represent the maximum degrees of minimal syzygies of S/I, it is
enough to show that M̃i ≤ Mi for i = 1, 2. If so, then

e(R) ≤ e(R̃) ≤ 1
2
M̃1M̃2 ≤

1
2
M1M2.

The inequality M̃1 ≤ M1 is easy to see. To prove M̃2 ≤ M2, Römer gives a clever
argument analyzing some long exact sequences in Koszul homology. See Section 2
of [Römer] for the details.

In summary, we have the following theorem.

Theorem 3.8. (Herzog-Srinivasan, Gold, Römer) Let I be a homogeneous ideal of
codimension two in S = k[x1, . . . , xn]. Then

e(S/I) ≤ 1
2
M1M2.

3.3. Gorenstein codimension three. In higher codimension, we have less struc-
ture to assist us. The conjectures are known for ideals that are either a com-
plete intersection [Herzog-Srinivasan1998] or a powers of a complete intersection
[Guardo-Van Tuyl], but Conjecture 1.1 is open even in the Cohen-Macaulay codi-
mension three case. When S/I is Gorenstein, with codim I = 3, however, the
bounds are known to hold. Even with the Buchsbaum-Eisenbud structure theo-
rems, this case was partially open for a number of years before Migliore, Nagel, and
Römer solved the lower bound in 2004.

Buchsbaum and Eisenbud proved a structure theorem for Gorenstein codimen-
sion three ideals in [Buchsbaum-Eisenbud]. Their result shows that these ideals are
pfaffians of skew-symmetric matrices, and they have minimal graded free resolu-
tions with a large amount of symmetry. Throughout the rest of the section, unless
otherwise noted, let I ⊂ S = k[x1, . . . , xn] be a Gorenstein ideal of codimension
three. Suppose its minimal generators have degrees a1 ≤ · · · ≤ a2r+1; note that



MULTIPLICITY CONJECTURES 9

the Buchsbaum-Eisenbud result guarantees that I has an odd number of minimal
generators. Then S/I has a minimal graded free resolution of the following form:

0 → S(−c) →
2r+1⊕
i=1

S(−(c− ai)) →
2r+1⊕
i=1

S(−ai) → S → S/I → 0

We can restate Conjecture 1.1 for the Gorenstein codimension three case using
this notation:

1
6
a1(c− a2r+1)(c) ≤ e(S/I) ≤ 1

6
a2r+1(c− a1)(c)

First, we discuss Herzog and Srinivasan’s proof of the upper bound in this case.
A computation, using a result from [Peskine-Szpiro] relating the degrees in the
shifts of the resolution of S/I to e(S/I), yields the following lemma.

Lemma 3.9. (Herzog-Srinivasan) Let I ⊂ S be a Gorenstein codimension three
ideal minimally generated by 2r + 1 elements. Then

e(S/I) =
1
6

2r+1∑
i=1

ai(c− ai)(c− 2ai).

Note that if c ≥ 2a2r+1, both bounds of Conjecture 1.1 follow immediately
[Herzog-Srinivasan1998]. If not, we need more calculations. By looking at the sums
of the degrees of the generators of the free modules at each step in the resolution,
it is easy to see that

2r+1∑
i=1

ai = rc;

additionally, c ≥ ai + a(2r+1)+2−i for i ≥ 2. After some computations using these
facts, Herzog and Srinivasan prove the upper bound.

Theorem 3.10. (Herzog-Srinivasan) Let I ⊂ S be a Gorenstein codimension three
ideal. Then S/I satisfies the upper bound of Conjecture 1.1; in the notation above,

e(S/I) ≤ 1
6
a2r+1(c− a1)c.

Example 3.11. Let R = k[a, b, c]. Let F be an ideal generated by three random
polynomials of degrees three, four, and five. (To produce a random polynomial of
degree d in the ring R in Macaulay 2, for example, use the command random(d,R).)
Let g be a random polynomial of degree four, and let I = F : g. Then I is a
Gorenstein codimension three ideal, and S/I has minimal graded free resolution

0 → R(−8) → R(−4)⊕R(−5)4⊕ → R(−3)4 ⊕R(−4) → R → R/I → 0.

The upper bound is

a2r+1(c− a1)c =
1
6
(4 · 5 · 8) =

80
3

.

Computing the multiplicity with Lemma 3.9, we have

e(R/I) =
1
6

5∑
i=1

ai(c− ai)(c− 2ai) =
1
6
[4(3 · 5 · 2) + 4 · 4 · 0] =

120
6

= 20 <
80
3

.
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In [Herzog-Srinivasan1998], Herzog and Srinivasan prove the lower bound in the
codimension three Gorenstein case in three situations. First, they show it in the
case that c ≥ 2a2r+1 as discussed above. With arguments similar to the ideas used
in the proof of Theorem 3.10, Herzog and Srinivasan prove the lower bound when
I has five generators. (Of course, when I has three generators, it is a complete
intersection, so this is the next logical case to consider.) Finally, using a structure
theorem for monomial Gorenstein ideals of codimension three from [Bruns-Herzog],
they prove the lower bound when I is a Gorenstein ideal of codimension three,
minimally generated by 2r + 1 monomials, with a1 = r.

The lower bound of Conjecture 1.1 for arbitrary Gorenstein codimension three
ideals remained open until 2004, when Migliore, Nagel, and Römer found a proof
[Migliore-Nagel-Römer]. As in the codimension two Cohen-Macaulay case, Migliore,
Nagel, and Römer proved a stronger version of Conjecture 1.1.

Theorem 3.12. (Migliore-Nagel-Römer) Let I ⊂ S = k[x1, . . . , xn] be a Goren-
stein ideal of codimension three. Then

e(S/I) ≥ 1
6
m1m2m3 +

1
3
(M3 −M2)(M2 −m2 + M1 −m1)

and
e(S/I) ≤ 1

6
M1M2M3 −

1
12

M3(M2 −m2 + M1 −m1).

We get a corollary similar to the result in the codimension two Cohen-Macaulay
case.

Corollary 3.13. (Migliore-Nagel-Römer) Let I be a homogeneous, Gorenstein ideal
of codimension three in S = k[x1, . . . , xn]. Then the following are equivalent:

(1) S/I has a pure resolution.
(2) e(S/I) = 1

6m1m2m3.
(3) e(S/I) = 1

6M1M2M3.

Example 3.11 continued: Let R and I be as above in Example 3.11. We already
computed that e(R/I) = 20. The upper bound of Conjecture 1.1 is 80

3 , and the
lower bound is 1

6 (3 · 4 · 8) = 16. Thus R/I satisfies both bounds of Conjecture 1.1,
but there is some slack here.

The bounds of Theorem 3.12 are tighter. Using those bounds, we have

16+
1
3
(8− 5)(5− 4+4− 3) = 18 ≤ e(R/I) = 20 ≤ 76

3
=

80
3
− 1

12
(8)(5− 4+4− 3).

We give a brief overview of the main ideas in the proof of Theorem 3.12. The
argument proceeds by induction on the size of the square matrix in the Buchsbaum-
Eisenbud resolution of the Gorenstein codimension three ideal, which we shall call
the Buchsbaum-Eisenbud matrix. Suppose I has 2r + 1 minimal generators. The
base case is when S/I is a complete intersection, and r = 1. Say the minimal
generators have degrees m1 ≤ y ≤ M1. Since S/I is a complete intersection, we
have immediately that m2 = m1 + y, M2 = y + M1, and m3 = M3 = m1 + y + M1.
The bounds then follow from some straightforward computations; see the beginning
of the proof of Theorem 1.4 in [Migliore-Nagel-Römer].

Now we assume that the bounds hold for some r ≥ 1 and try to prove them for
r+1. Start with a Gorenstein codimension three ideal I ′ with Buchsbaum-Eisenbud
matrix of size (2r+3)× (2r+3). Migliore, Nagel, and Römer show that the matrix
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can be put in a convenient form so that the resulting degree matrix is symmetric
about the diagonal opposite the main diagonal (that is, about the upward sloping
diagonal of maximal length). Let I be the Gorenstein codimension three ideal that
comes from removing the top and bottom rows and leftmost and rightmost columns
of the Buchsbaum-Eisenbud matrix of I ′. Then the bounds hold for I by induction.

There is a relatively simple relation between the multiplicities of R/I and R/I ′.
Using results from [Geramita-Migliore], Migliore, Nagel, and Römer compute this
relation by considering some ideals of smaller codimension. The idea is to build two
Gorenstein codimension three ideals with the same graded Betti numbers as I and
I ′ in a particularly nice way. Since Conjecture 1.1 depends only on the graded Betti
numbers, we can work with the new ideals instead. There exists a Cohen-Macaulay
codimension two ideal J with resolution similar to I: Namely, if I has generators
of degrees a1 ≤ · · · ≤ a2r+1 and first syzygies of degrees b1 ≤ · · · ≤ b2r+1, then S/J
has minimal graded free resolution

0 →
r⊕

i=1

S(−bi) →
r+1⊕
i=1

S(−ai) → S → S/J → 0.

Moreover, there is an ideal J̃ that is geometrically linked to J such that J + J̃ has
the same graded Betti numbers (and hence multiplicity) as I. Similarly, there is
a Cohen-Macaulay codimension two ideal J ′ corresponding to I ′. Migliore, Nagel,
and Römer find a relationship between e(R/(J + J̃)) = e(R/I) and e(R/J) first,
reducing to the case in which J and J ′ define curves. They can then relate the
genera of J and J ′ and e(R/J), which is enough to get a useful equation comparing
e(R/I) and e(R/I ′). The bounds then follow from some long computations; see
[Migliore-Nagel-Römer] for the details.

Remark 3.14. To summarize the results of this section, suppose that I ⊂ S
= k[x1, . . . , xn] is a homogeneous ideal. If codim I = 2, or if S/I is Gorenstein of
codimension three, then S/I satisfies Conjecture 1.1. Moreover, if codim I = 2 and
S/I is Cohen-Macaulay, or if codim I = 3 and S/I is Gorenstein, then Theorem 3.4
gives stronger bounds for e(S/I). In either of these two cases, e(S/I) attains the
lower or upper bound of Conjecture 1.1 if and only if S/I has a pure resolution.
This provides a converse to Huneke and Miller’s result in these cases. Finally, both
bounds of Conjecture 1.1 are open even when codim I = 3 and S/I is Cohen-
Macaulay.

4. Monomial ideals

It is natural to investigate Conjecture 1.1 in the case of monomial ideals since
they are often easier with which to work than arbitrary ideals. While it is still too
difficult to prove the conjectures for general monomial ideals, in some cases, we can
exploit structure theorems on the resolutions of special kinds of monomial ideals.
We investigate some of these ideals in this section.

4.1. Stable ideals. We begin by recalling the definition of a stable ideal. For a
monomial u in k[x1, . . . , xn], let max(u) be the largest index of a variable dividing u.
For example, max(x3

2x
8
4x

2
6) = 6. Eliahou and Kervaire made the following definition

in [Eliahou-Kervaire].

Definition 4.1. Let I be a monomial ideal in S = k[x1, . . . , xn]. We say that I is
a stable ideal if for all monomials u ∈ I, xiu/xmax(u) ∈ I for all i ≤ max(u).
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It suffices to check the condition for all monomials u in G(I), the minimal mono-
mial generating set of I. Consider, for instance, the ideal J = (x3

1, x
2
1x2, x

2
1x

2
3).

There is nothing to check with x3
1. For the second generator, since max(x2

1x2) = 2,
we need only note that x3

1 ∈ J . Finally, for the final generator, both x2
1x2x3 and

x3
1x3 are in J , so J is stable.
There are a number of reasons that stable ideals are interesting. Suppose S =

k[x1, . . . , xn] and that k is a field of characteristic zero. Then the generic initial
ideal of any homogeneous ideal I, written gin(I), is a stable ideal (in fact, a strongly
stable ideal). Taking the generic initial ideal is a useful tool that appears in a
number of results and conjectures in commutative algebra and algebraic geometry.
Additionally, lexicographic ideals, which play an important role in extremal results
about Hilbert functions and graded Betti numbers (see, for example, Section 5),
are stable ideals. Finally, stable ideals have convenient combinatorial properties
that make them easy with which to work. Eliahou and Kervaire computed the
minimal free resolution of an arbitrary stable ideal in [Eliahou-Kervaire], and from
that resolution, one can easily compute the graded Betti numbers of a stable ideal.

Theorem 4.2. (Eliahou-Kervaire) Let I be a stable ideal in S = k[x1, . . . , xn].
Then

β
S/I
i,i+j =

∑
u∈G(I)

deg u=j+1

(
max(u)− 1

i− 1

)
.

We use this formula to explore Herzog and Srinivasan’s work on Conjecture 1.1
in [Herzog-Srinivasan1998] in the stable ideal case. Our approach is to present the
upper bound in the Cohen-Macaulay case in detail and then sketch the other (more
involved) cases. Assume first that I is stable, and S/I is Cohen-Macaulay.

Theorem 4.3. (Herzog-Srinivasan) Let I be a stable ideal of codimension c, and
let S/I be Cohen-Macaulay. Then

1
c!

c∏
i=1

mi ≤ e(S/I) ≤ 1
c!

c∏
i=1

Mi.

We can reduce to the case in which S/I has depth zero, and since we suppose
S/I is Cohen-Macaulay, we have that S/I is Artinian and c = n. One can see the
technique Herzog and Srinivasan use to prove the upper bound in an example.

Example 4.4. Let

I = (a3, a2b, a2c, ab2, abc2, ac3, b5, b4c, b3c2, b2c3, bc4, c5) ⊂ R = k[a, b, c].

Then I is a stable ideal, and R/I is Artinian. To display the graded Betti num-
bers of R/I, we use the notation of the computer algebra system Macaulay 2
[Grayson-Stillman]. The rows and columns of the diagram below are numbered
beginning with zero, and one finds βij in column i and row j− i. The graded Betti
diagram of R/I is:

R/I: total: 1 12 19 8
0: 1 . . .
1: . . . .
2: . 4 4 1
3: . 2 4 2
4: . 6 11 5
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The Betti diagram is a particularly nice way to visualize where the maximum
degree syzygies occur at each step in the resolution, which is why we use it in
this case. Here, the highest degree of a syzygy at each step occurs in row four, so
M1 = 5, M2 = 6, and M3 = 7. Because

e(R/I) = 21 ≤ 1
3!

(5 · 6 · 7) = 35,

R/I satisfies the upper bound of Conjecture 1.1.

The form of the resolution in Example 4.4 is no accident. Suppose I is stable,
S/I is Artinian, and the maximum degree of a minimal generator of I is d. Then
M1 = d, M2 = d + 1, and in general, Mi = d + i − 1 for 1 ≤ i ≤ n. An easy
computation shows that

e(S/I) ≤ e(S/(x1, . . . , xn)d) =
1
d!

n∏
i=1

Mi,

which proves the upper bound.
The lower bound is a bit trickier, and we only sketch the main idea here. It

follows immediately from Theorem 4.2 that for each i, mi = min{deg(u) : u ∈
G(I) | max(u) = i}+ i− 1. Additionally, we have the short exact sequence

0 → S/(I : xn) → S/I → S/(I, xn) → 0.

Because we are assuming that S/I has finite length, it follows that the multiplicities
of the modules in the short exact sequence are equal to their lengths. A careful com-
parison of the mi for S/I, S/(I, xn) (thought of as a module over k[x1, . . . , xn−1]),
and S/(I : xn) along with inducting on the length gives the lower bound of Theo-
rem 4.3. See [Herzog-Srinivasan1998] for the details.

Next, we consider the case in which I is stable, but S/I is not Cohen-Macaulay.
Initially, note that the lower bound may fail if S/I is not Cohen-Macaulay even
when I is stable.

Example 4.5. Let I = (a2, ab) ⊂ R = k[a, b]. Clearly, I is stable, but R/I is not
Cohen-Macaulay. The minimal graded free resolution of R/I is

0 → R(−3) → R(−2)2 → R → R/I → 0,

and e(R/I) = 1. But 1
1! (2) 6< 1.

Thus we shall consider only the upper bound in the non-Cohen-Macaulay case.
Herzog and Srinivasan prove the following result.

Theorem 4.6. (Herzog-Srinivasan) If I ⊂ S is stable of codimension c, then

e(S/I) ≤ 1
c!

c∏
i=1

Mi.

The proof is somewhat more complicated than in the upper bound Cohen-
Macaulay case, and we omit it. Roughly, one uses the same short exact sequence
as we used above in the lower bound case along with Noetherian induction.
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4.2. Squarefree strongly stable ideals. Using similar methods, we can prove
Conjecture 1.1 for the related class of squarefree strongly stable ideals. We recall
the definition of these ideals.

Definition 4.7. Let I be a monomial ideal in S = k[x1, . . . , xn]. We say that I
is squarefree strongly stable if I is generated by squarefree monomials, and for
each u ∈ G(I), xi(u/xj) ∈ I for all i < j such that xj divides u, and xi does not
divide u.

This is essentially the same as the condition for being strongly stable except that
we only require the new monomial be in I when it is squarefree.

Example 4.8. Let I = (x1x2, x1x3, x2x3, x1x4x5) ⊂ R = k[x1, . . . , x5]. We check
the squarefree strongly stable condition for the four minimal generators. The first
two obviously meet the condition, and x2x3 does also since x1x2 and x1x3 are in I.
Consider x1x4x5. The squarefree monomials we can get via the shifting operation
are x1x3x5, x1x2x5, x1x3x4, x1x2x4, and x1x2x3. All of these are in I, and thus I
is squarefree strongly stable.

Squarefree monomial ideals are of particular interest in combinatorics because
they are the Stanley-Reisner ideals of simplicial complexes. Squarefree strongly
stable ideals were introduced in [Aramova-Herzog-Hibi1998], and this class has
convenient properties similar to those of stable ideals. In particular, an explicit
minimal graded free resolution of such an ideal is known. Charalambous and
Evans described the resolution for squarefree lexsegment ideals, a special type of
squarefree strongly stable ideal, in [Charalambous-Evans], where they considered
a more general class of ideals that they called lex-seg with holes ideals. Aramova,
Herzog, and Hibi generalized this work to all squarefree strongly stable ideals in
[Aramova-Herzog-Hibi1998], and Gasharov, Hibi, and Peeva proved an even more
general result in [Gasharov-Hibi-Peeva].

Let I ⊂ S be a squarefree strongly stable ideal. The minimal graded free resolu-
tion of S/I is a subcomplex of an Eliahou-Kervaire resolution, and the bases for the
free modules Fi are straightforward to describe. Fi has as basis elements symbols
f(σ, u) such that: u ∈ G(I), σ ⊂ [n] = {1, . . . , n}, |σ| = i − 1, max(σ) < max(u),
and if i ∈ σ, then xi does not divide u. The degree of a basis element f(σ, u) is
deg u + i− 1. Therefore, for u to give rise to a basis element f(σ, u) of Fi, we must
have max(u)− deg u ≥ i− 1. Hence

mi = min{deg u : u ∈ G(I), max(u)− deg u ≥ i− 1}+ i− 1

and
Mi = max{deg u : u ∈ G(I), max(u)− deg u ≥ i− 1}+ i− 1.

Thus we have a combinatorial description of the mi and Mi for squarefree strongly
stable ideals.

Example 4.9. As in Example 4.8, let I = (x1x2, x1x3, x2x3, x1x4x5) ⊂ R =
k[x1, . . . , x5]. We compute m2 and M2 using the formulas above. We have

m2 = min{deg x1x3,deg x2x3,deg x1x4x5}+ 2− 1 = 2 + 2− 1 = 3;

note we consider deg u only for those minimal generators u with max(u)− deg u ≥
2− 1 = 1. For the maximum, we have

M2 = max{deg x1x3,deg x2x3,deg x1x4x5}+ 2− 1 = 3 + 2− 1 = 4.
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One can show that m1 = 2, m3 = 5, M1 = 3, M3 = 5, and e(R/I) = 2. Note
also that codim I = 2. Since R/I is not Cohen-Macaulay, we do not necessarily
expect the lower bound of Conjecture 1.1 to hold, and it does not. However,

e(R/I) = 2 <
1
2!

(3 · 4) = 6,

so the upper bound does hold.

We have the following theorem from [Herzog-Srinivasan1998].

Theorem 4.10. (Herzog-Srinivasan) Let I ⊂ S = k[x1, . . . , xn] be a squarefree
strongly stable ideal of codimension c. If S/I is Cohen-Macaulay, then

1
c!

c∏
i=1

mi ≤ e(S/I) ≤ 1
c!

c∏
i=1

Mi.

If S/I is not Cohen-Macaulay, then the upper bound still holds.

We sketch the idea of the proof of the upper bound in the Cohen-Macaulay
case because it involves some interesting interplay between commutative algebra
and combinatorics. For a monomial u, let min(u) be the minimum i such that xi

divides u. We reduce to the case in which v = xn−d+1 · · ·xn has maximal min(u)
among all monomials u ∈ G(I). As a result, all the squarefree monomials of degree
d are in I.

Next, let A = S/(I, x2
1, . . . , x

2
n). (This is sometimes called an indicator algebra.)

A monomial is zero in this quotient if and only if it is either in I or divisible by
a square. Therefore the only surviving monomials are those that correspond to
faces of ∆, where I is the Stanley-Reisner ideal of ∆. Hence the Hilbert function
of A gives the f -vector (f−1, f0, . . . , ) of ∆, where fi is the number of faces of ∆ of
dimension i. In particular, dimk Ai = fi−1. Using the correspondence between the
fi and the hi, the coefficients in the numerator of the rational function expression
of the Hilbert series in lowest terms, it is not hard to show that the number of
maximal faces of ∆ is equal to the multiplicity of S/I, which is the sum of the hi.
See, for example, [Stanley].

Example 4.11. Let I = (x1x2x3) ⊂ R = k[x1, x2, x3]. This corresponds to the
simplicial complex ∆ consisting of the vertices v1, v2, and v3, and the three line
segments connecting the vertices, but not the interior of the triangle. The Hilbert
series of R/I, in lowest terms, is

1 + t + t2

(1− t)2
,

so e(R/I) = 1 + 1 + 1 = 3. This is the same as the number of maximal faces (in
this case, the three edges).

Since I contains all squarefree monomials of degree d, Ad = 0. Additionally,
we have Ad−1 6= 0, for otherwise, xn−d+2 · · ·xn ∈ I, which is impossible since v
is a minimal generator of I. Thus e(R/I) = dimk Ad−1 ≤

(
n

d−1

)
, the number of

squarefree monomials in S of degree d−1. Now, using the formula for the Mi given
above, we have Mi = d + i − 1 for i = 1, . . . , n − d + 1; note that n − d + 1 is the
codimension of I (see [Herzog-Srinivasan1998] for a formula for the codimension).
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Thus

e(S/I) ≤
(

n

d− 1

)
=

1
(n− d + 1)!

n−d+1∏
i=1

Mi,

and the upper bound holds.
The proof of the non-Cohen-Macaulay upper bound case is almost exactly the

same as for stable ideals, using the short exact sequence

0 → S/(I : xn) → S/I → S/(I, xn) → 0.

The lower bound requires a bit more computation; see the end of Section 4 of
[Herzog-Srinivasan1998].

4.3. Componentwise linear ideals. We move now to a larger class of ideals
that generalizes the previous examples in this section. Stable ideals and squarefree
strongly stable ideals have a property known as componentwise linearity. For a
homogeneous ideal I and a degree d, let I<d> be the ideal generated by the degree
d elements of I. Herzog and Hibi made the following definition in [Herzog-Hibi].

Definition 4.12. Let I be a homogeneous ideal. We say that I is componentwise
linear if I<d> has a d-linear resolution for each d.

Example 4.13. Let I = (c2, abc, a2b2) ⊂ R = k[a, b, c]. Then I is not stable or
squarefree strongly stable, but we claim I is componentwise linear. Clearly I<2> is
2-linear. Note that we have the 3-linear minimal graded free resolution

0 → R(−5) → R(−4)4 → R(−3)4 → R → R/I<3> → 0.

Since the regularity of R/I is three, it follows that R/I<d> has a d-linear resolution
for all d, and thus I is componentwise linear.

Componentwise linear ideals are especially important in combinatorics, provid-
ing a nice duality result. A theorem of Eagon and Reiner says that a Stanley-
Reisner ideal I∆ associated to a simplicial complex ∆ has a linear resolution if and
only if the Alexander dual ∆∗ is Cohen-Macaulay. Herzog and Hibi and Herzog,
Reiner, and Welker generalized this result by showing that I∆ is componentwise
linear if and only if ∆∗ is sequentially Cohen-Macaulay, a less restrictive condi-
tion than Cohen-Macaulayness [Herzog-Hibi, Herzog-Reiner-Welker]. In addition,
there is a good algebraic characterization of componentwise linear ideals as well
[Aramova-Herzog-Hibi2000]:

Theorem 4.14. (Aramova-Herzog-Hibi) Let I be a homogeneous ideal in S =
k[x1, . . . , xn], where char k = 0. Let gin(I) be the reverse-lex generic initial ideal
of J . Then I is componentwise linear if and only if

βij(S/I) = βij(S/gin(I))

for all i and j.

In [Römer], Römer combined Theorem 4.14 and the results of Herzog and Srini-
vasan on stable ideals to prove the next result.

Theorem 4.15. (Römer) Let I be a componentwise linear ideal of codimension c
in S = k[x1, . . . , xn], where k is a field of characteristic zero. Then

e(S/I) ≤ 1
c!

c∏
i=1

Mi.
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Proof. Because I is componentwise linear, β
S/I
ij = β

S/gin(I)
ij for all i and j. Taking

the gin preserves the Hilbert function, and thus we have

e(S/I) = e(S/gin(I)) ≤
c∏

i=1

M
S/gin(I)
i =

c∏
i=1

M
S/I
i ,

where the inequality follows from Theorem 4.6. �

Remark 4.16. Under the hypotheses of Theorem 4.15, if we also assume that S/I
is Cohen-Macaulay, the same argument gives the lower bound of Conjecture 1.1 for
S/I (since S/gin(I) is also Cohen-Macaulay).

Knowing the bounds for componentwise linear ideals yields the conjecture for
a number of interesting special cases. Some examples include ideals with a linear
resolution (with the appropriate Cohen-Macaulay assumption), the a-stable ideals
of Gasharov-Hibi-Peeva [Gasharov-Hibi-Peeva], and at most n + 1 fat points in
general position in Pn [Francisco2004b].

4.4. Taylor bounds. For a monomial ideal, there is a natural resolution called the
Taylor resolution. It is not minimal except when the ideal is a complete intersection.
However, the equations∑n

i=1 bj(−1)idk
ij = −1, k = 0

= 0, 1 ≤ k < h
= (−1)nh!e k = h

hold even if the resolution is not minimal. Hence we can ask for the bounds from
this nonminimal resolution. To establish notations, we denote the cardinality of a
set A by |A|. Let [n] denote the set of first n positive integers. Let I be a monomial
ideal generated by the monomials f1, . . . , fn. If σ is a subset of [n], let fσ denote
the lcm of fi, i ∈ σ and |σ| denote the size of σ. Then the shifts in the Taylor
resolution of R/I at the jth place are deg(LCM fσ, |σ| = j). The maximal shifts in
the ith place, is Lj = max{deg(LCM fσ, |σ| = j)} .

Then the conjecture of Herzog and Srinivasan is:

Conjecture 1.2: (Herzog-Srinivasan) Suppose that I is a monomial ideal of height
h and is minimally generated by f1, . . . , fn. Let Li be the maximal shifts in the
Taylor resolution of R/I. Then the multiplicity e of R/I satisfies

1
h!

i=h∏
i=1

Li ≥ e.

If I is a complete intersection ideal, clearly the Taylor resolution is the same
as the Koszul resolution and all the bounds hold. If I is a monomial ideal of
height h whose minimal generating set contains a regular sequence of length h, then
the Taylor bound holds. For if K is the ideal generated by the regular sequence
that forms part of the minimal generating set of I, then e(R/I) ≤ e(R/K) and
Li(I) ≥ Li(K). So we get that e(R/I) ≤

∏i=h
i=1 Li. Herzog and Srinivasan prove:

Theorem 4.17. (Corollary 4.3 [Herzog-Srinivasan2004]) For a monomial ideal of
height 2, the Taylor bound holds.

Theorem 4.18. (Theorem 5.3 [Herzog-Srinivasan2004]) Let I be an almost com-
plete intersection monomial ideal. Then the Taylor bound holds for I.
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As a first reduction, they show that if Taylor bound holds for all squarefree mono-
mial ideals, then it holds for all monomial ideals [Herzog-Srinivasan2004]. Thus the
problem is one for squarefree monomial ideals. If I is a squarefree monomial ideal,
then its multiplicity can also be computed as the number of primes of height h in
an irredundant primary decomposition of I. Then they estimate this number from
the primary decomposition of I to arrive at the Taylor bound.

In fact, in light of the first reduction to squarefree monomial ideals, the conjecture
can be stated as a problem in combinatorics. An antichain A on n vertices is a
collection of subsets of [n] such that none of the sets in A contains another set in
A. A subset B ⊆ [n] is a minimal vertex cover of A if B ∩ A 6= ∅ for all A ∈ A,
and for any proper subset C ⊂ B, there exists A′ ∈ A such that C ∩ A′ = ∅. Let
M(A) = B1, . . . , Bt be all the distinct set of minimal vertex covers of A and let
Li = max{| ∪k∈σ Bk|, σ ⊂ [t], |σ| = i} If h = h(A) denotes the least cardinality of
an element of A, and e(A) equals the number of subsets in A of cardinality h, then
the conjecture states that h!e(A) ≤ L1L2 · · ·Lh.

In addition, this method of stating the problem has a further advantage. Since
it can be easily proved that M(M(A)) = A for any antichain A, a theorem for A
has a dual theorem for M(A). Recall that the sup height is the maximal height
of a minimal prime of I. Thus the theorems in codimension two tell us that if a
squarefree monomial ideal I in a polynomial ring of dimension n, then the number
of generators of I in degree two is bounded above by (n/2)sup heightI.

A simple reduction one can do to prove the conjecture is:

Theorem 4.19. Suppose the Taylor bound holds for monomial ideals of height h
generated by f1, f2, . . . , ft such that no t−1 of them will generate an ideal of height
h. Then the Taylor bound holds for all monomial ideals of height h. That is, the
conjectured bound for the antichains A holds if it holds for those antichains A such
that every proper subset B of M(A) has a minimal vertex cover of cardinality h−1,
where h = h(A).

Proof. We proceed by induction on the number of generators, the case of one
generator being trivial. Let I be a monomial ideal of height h minimally gen-
erated by f1, . . . , fn. Let Ji = (f1, . . . , fi−1, fi+1, . . . , fn), 1 ≤ i ≤ n. If one
of the Ji has height h, then since the generators of J are among the generators
of I, Lt(R/Ji) ≤ Lt(R/I). However, since Ji ⊂ I and is of the same height,
e(R/I) ≤ e(R/Ji). Now, Ji has one fewer generator and hence by induction the
bound holds for Ji. Thus, we get

e(R/I) ≤ e(R/Ji) ≤
h∏

t=1

Lt(R/Ji) ≤
h∏

t=1

Lt(R/I)

as desired. If none of the Ji, 1 ≤ i ≤ n, has height h, then the result is true by the
assumption. �

5. Resolutions for a given Hilbert function and truncation

In this section, we take a different approach to the conjectures, surveying work
from [Francisco2004a]. We devote the first part of the section to investigating
Conjecture 1.1 by analyzing what sets of graded Betti numbers occur for a fixed
Hilbert function. One can reduce Conjecture 1.1 for all modules with a given
Hilbert function to considering only a few arrangements of graded Betti numbers,
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often getting the bounds for all modules with that Hilbert function from analyzing
just those sets. In the final portion of this section, we discuss the upper bound
in the Cohen-Macaulay case, describing how to prove the result for ideals with
generators in high degrees relative to their regularity.

5.1. Multiplicity and resolutions for a given Hilbert function. We begin
with a quick overview of the theory of resolutions for a given Hilbert function. In his
1890 paper [Hilbert], Hilbert showed that one can compute the Hilbert function of
a module from its graded free resolution. Recently, researchers have been interested
in going the other direction: Given a Hilbert function, what minimal graded free
resolutions (that is, sets of graded Betti numbers) occur for modules with that
Hilbert function? There may be a number of possibilities; for example, (a2, b2) and
(a2, ab, b3) have the same Hilbert function, but they do not even have the same
number of generators.

One way to study this question is to impose a partial order on the sets of graded
Betti numbers that occur for modules with a fixed Hilbert function. Suppose S/I
and S/J are graded modules with the same Hilbert function. We say that βS/I ≤
βS/J if and only if β

S/I
ij ≤ β

S/J
ij for all i and j. This is a strong condition, and in

particular, there may be many incomparable resolutions.
In the early 1990s, Bigatti [Bigatti] and Hulett [Hulett] proved independently

in characteristic zero that if L ⊂ S is a lexicographic ideal, and I ⊂ S is an ideal
with the same Hilbert function, then βS/I ≤ βS/L. Pardue generalized the result to
positive characteristic [Pardue]. Thus there is always a uniquely maximal element
in the partially ordered set, though there are often multiple minimal elements. Since
lexicographic ideals are stable, they satisfy the bounds of Conjecture 1.1.

Hence the top of the partially ordered set satisfies the bounds, but what about
the other sets of graded Betti numbers? To consider this question, let I be a
homogeneous ideal of codimension c in S = k[x1, . . . , xn]. Suppose S/I satisfies the
bounds of Conjecture 1.1. (If S/I is not Cohen-Macaulay, then by this assumption
we mean that S/I satisfies the upper bound, and one makes the obvious adjustments
in the discussion that follows.) Then we have

1
c!

c∏
i=1

m
S/I
i ≤ e(S/I) ≤ 1

c!

c∏
i=1

M
S/I
i .

Let J be a homogeneous ideal in S satisfying the following conditions: S/J has
the same Hilbert function as S/I, and βS/I ≤ βS/J . (Since I and J are both ideals
in S with the same Hilbert series, they have the same codimension.) Then because
β

S/I
ij ≤ β

S/J
ij for all i and j,

m
S/J
i ≤ m

S/I
i and M

S/I
i ≤ M

S/J
i ;

the resolution of S/J has all the terms of the resolution of S/I plus possibly more,
so the minimum shifts can be lower, and the maximum shifts can be higher. In
addition, because I and J have the same Hilbert function, and the Hilbert function
determines the multiplicity, e(S/I) = e(S/J). Putting these facts together, we have

1
c!

c∏
i=1

m
S/J
i ≤ 1

c!

c∏
i=1

m
S/I
i ≤ e(S/I) = e(S/J) ≤ 1

c!

c∏
i=1

M
S/I
i ≤ 1

c!

c∏
i=1

M
S/J
i .
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Therefore S/J also satisfies the bounds of Conjecture 1.1. We have proven the
following proposition.

Proposition 5.1. Let I and J be homogeneous ideals in S = k[x1, . . . , xn]. Suppose
that I and J have the same Hilbert function, βS/I ≤ βS/J , and S/I satisfies the
bounds in Conjecture 1.1. Then Conjecture 1.1 also holds for S/J .

As a consequence of Proposition 5.1, we need only check Conjecture 1.1 for
the (finitely many) minimal elements in the partially ordered set for each Hilbert
function. Suppose we fix a Hilbert function and find all the minimal elements in
the partial order. If all these minimal sets of graded Betti numbers satisfy the
bounds of Conjecture 1.1, then we can use Proposition 5.1 to “lift” the result to
all resolutions above the minimal elements. This proves the bounds for all modules
with the given Hilbert function. We illustrate this technique in an example.

Example 5.2. Let R = k[a, b, c], and let L ⊂ R be the lexicographic ideal such that
R/L has Hilbert function H = (1, 3, 6, 9, 9, 6, 2). Let I be the ideal (a3, b4, c4, b2c2).
Then L and I have the same Hilbert function. The Betti diagrams of R/L and R/I
are below:

R/L: total: 1 16 27 12 R/I: total: 1 4 5 2
0: 1 . . . 0: 1 . . .
1: . . . . 1: . . . .
2: . 1 . . 2: . 1 . .
3: . 3 5 2 3: . 3 . .
4: . 5 9 4 4: . . 2 .
5: . 5 9 4 5: . . 3 .
6: . 2 4 2 6: . . . 2

Note that by making all potentially possible cancellations in the Betti diagram of
R/L (that is, removing an even and odd syzygy of the same degree), we obtain the
Betti diagram of R/I, the unique minimal element in the partial order. Therefore
βR/I ≤ βR/J for all ideals J ⊂ R with the same Hilbert function as I; the resolution
of R/I is the unique minimal element in the partial order on resolutions with the
fixed Hilbert function. The bounds on R/I from Conjecture 1.1 are

27 =
1
3!

(3)(6)(9) ≤ e(R/I) = 36 ≤ 1
3!

(4)(7)(9) = 42,

and thus R/I satisfies the conjecture. (This is actually immediate since R/I has
a quasipure resolution.) By Proposition 5.1, the bounds of Conjecture 1.1 hold for
all modules with the same Hilbert function as I.

Macaulay 2 tests with this technique yield the following theorem [Francisco2004a].

Theorem 5.3. Let I be a homogeneous ideal in R = k[x1, x2, x3] such that R/I is
zero in degree 10 and higher. Then R/I satisfies the upper bound of Conjecture 1.1.

Remark 5.4. In testing Theorem 5.3, one finds only 197 Hilbert functions for
which there is a potential minimal resolution that violates the upper bound of
Conjecture 1.1. One can exclude each of those potential counterexamples with
various easy arguments; see [Francisco2004a]. The existence of these potential
counterexamples is important, however, because it shows that there is no purely
numerical proof for Conjecture 1.1.
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5.2. Truncation. We turn now to the technique of truncation. For the rest of this
section, assume that S/I is Cohen-Macaulay, and we shall consider only the upper
bound of Conjecture 1.1. The idea behind truncation is that once we know the
multiplicity of S/I, there is a lot of extraneous information in the resolution. We
need only compute the maximum degree of a shift at each step in the resolution, so
the syzygies in lower degrees are not so important. Truncation allows us to focus
only on the most significant portion of the resolution.

Let I≥d be the ideal in S consisting of all elements of I of degree d or higher.
Instead of working with S/I, we shall truncate and work with modules of the form
S/I≥d. It is easy to see that e(S/I) ≤ e(S/I≥d) for all d. The next lemma explains
how the graded Betti numbers of S/I are related to those of S/I≥d.

Lemma 5.5. Let I be a homogeneous ideal in S = k[x1, . . . , xn], and let d be a
positive integer. Then for each integer l ≥ 0,

β
S/I
i,i+d+l = β

S/I≥d

i,i+d+l.

That is, rows d and higher of the Betti diagrams of S/I and S/I≥d are the same.
Moreover, if I has its highest degree minimal generator in degree ≥ d, and S/I

is Cohen-Macaulay, then M
S/I
i = M

S/I≥d

i .

The proof is a relatively straightforward exercise in homological algebra, consid-
ering a long exact sequence in Tor induced by the short exact sequence

0 −→ I/I≥d −→ S/I≥d −→ S/I −→ 0.

Example 5.8, an example related to Theorem 5.7, illustrates the truncation
process, and the reader may wish to look at it now. Note that truncation al-
lows us to reduce the upper bound portion of Conjecture 1.1 to the case of ideals
whose minimal generators are all in a single degree.

Proposition 5.6. Let I be an Artinian homogeneous ideal in S = k[x1, . . . , xn].
Let d be the highest degree in which I has a minimal generator. If S/I≥d satisfies
the upper bound of Conjecture 1.1, then so does S/I.

Proof. We know e(S/I) ≤ e(S/I≥d). We are assuming that S/I≥d satisfies the
upper bound of Conjecture 1.1, so

e(S/I) ≤ e(S/I≥d) ≤
1
n!

n∏
i=1

M
S/I≥d

i .

By Lemma 5.5, M
S/I
i = M

S/I≥d

i for each i. Hence S/I satisfies the upper bound
of Conjecture 1.1. �

It follows easily that in the Artinian case, we need only consider ideals with all
their minimal generators in a single degree. The Artinian case also implies the
Cohen-Macaulay case; see [Francisco2004a].

We use Proposition 5.6 in conjunction with Theorem 2.2 on quasipure resolu-
tions. The proof of Theorem 2.2 is numerical: Any potential quasipure resolution
below that of a lex ideal satisfies the bounds; there need not exist a module with
that resolution. Combining this with the work in this section gives the following.

Theorem 5.7. Let I be a homogeneous ideal of codimension c in S such that S/I is
Cohen-Macaulay of regularity d. Suppose I contains a minimal generator of degree
d or d + 1. Then S/I satisfies the upper bound of Conjecture 1.1.
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Proof. We may assume that I is Artinian and that c = n (for if there is a Cohen-
Macaulay module with the given Betti numbers, there is an Artinian module with
the same Betti numbers). Note that if S/I has regularity d, then degree d + 1
is the highest degree in which I can have a minimal generator. The resolution of
S/I≥d is concentrated in rows d − 1 and d of the Betti diagram, the bottom two
rows. Therefore S/I≥d has a quasipure resolution, and it satisfies the bounds of
Conjecture 1.1. Lemma 5.5 combined with e(S/I) ≤ e(S/I≥d) gives

e(S/I) ≤ e(S/I≥d) ≤
c∏

i=1

M
S/I≥d

i =
c∏

i=1

M
S/I
i .

Hence S/I satisfies the upper bound of Conjecture 1.1. �

This result gives, for example, an easy proof of the upper bound for stable Cohen-
Macaulay ideals. There are examples of potential Betti diagrams with three nonzero
rows (instead of just two) that do not satisfy the upper bound of Conjecture 1.1,
which shows that no further reduction like the one in Theorem 5.7 is possible.

We illustrate Theorem 5.7 with an example.

Example 5.8. Let I = (a3, b4, c4, ab2, a2bc3) ⊂ R = k[a, b, c]. Then R/I has
regularity six, and I has a minimal generator in degree six. We resolve R/I and
R/I≥6 below.

R/I: total: 1 5 8 4 R/I≥6: total: 1 27 46 20
0: 1 . . . 0: 1 . . .
1: . . . . 1: . . . .
2: . 2 . . 2: . . . .
3: . 2 2 . 3: . . . .
4: . . . . 4: . . . .
5: . 1 5 3 5: . 27 45 19
6: . . 1 1 6: . . 1 1

Note that R/I does not have a quasipure resolution, so Theorem 2.2 does not
apply. However, the truncation R/I≥6 does have a quasipure resolution, and R/I
and R/I≥6 have the same maximum shifts at each step in the resolution. Also,
e(R/I) = 31 ≤ 57 = e(R/I≥6), and thus R/I satisfies the upper bound of Conjec-
ture 1.1 because R/I≥6 does.

6. Zero dimensional schemes

L. Gold, H. Schenck and H. Srinivasan consider the case of zero dimensional
schemes in [Gold-Schenck-Srinivasan]. Let X ⊆ Pn be a set of points which form a
complete intersection. If Y ⊂ X is a set of points and Z = X \Y is the set of points
obtained by deleting Y from X, then Z is called residual to Y , and their ideals are
given by IZ = (IX : IY ). Let R = k[x0, . . . , xn] denote the homogenous coordinate
ring of the projective space. This means a resolution of R/IZ can be obtained from
the mapping cone of the resolutions of R/IX and R/IY . In particular, if FX ,FY

denote the minimal resolutions of R/IX and R/IY respectively, and φ : FX → FY

is the complex map induced by the inclusion of Y in X, then the dual of the
mapping cone of φ is a resolution of R/IZ . The minimal resolution of R/IZ is a
direct summand of this nonminimal resolution, naturally. The multiplicity of Z is
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simply the multiplicity of X minus the multiplicity of Y as it counts the number of
points in the set. The main result in this context is:

Theorem 6.1. [Gold-Schenck-Srinivasan] Let X ⊆ Pn be a set of points forming a
complete intersection and Y ⊂ X be collinear or |Y | = 3. Then the multiplicity of
R/IZ satisfies the conjectured lower and upper bounds.

The computations in the proofs are still somewhat complicated, and we refer
the reader to the original paper cited above. It is worth noting that if the minimal
resolution of R/IZ is the dual of the mapping cone with the obvious truncation
at the end, the computations are manageable. In other cases, the fact that the
number of points in Y are small or special enough to lie on a line simplifies the
computations in the resolution of R/IZ just enough to estimate the multiplicity
and get the bounds.

Remark 6.2. Since we wrote the original draft of this paper, there has been a con-
siderable amount of work on the multiplicity conjectures, and we mention a sample
of that work here. Papers of Novik and Swartz and Kubitzke and Welker have
attacked the conjectures from innovative combinatorial perspectives. Zanello has
proposed and, in some cases, proven improved bounds in the case of codimension
three level algebras, and he, along with Migliore and Nagel, have proven stronger
bounds in the Gorenstein codimension three case. These bounds are particularly
interesting since they are expressed in terms of the Hilbert function, not the Betti
numbers. In another direction, Migliore, Nagel, and Römer have attacked the con-
jectures using linkage theory, and they have proposed extensions of the conjectures
to modules. Additionally, several authors, including Migliore, Nagel, and Römer
and Herzog and Zheng, have conjectured that the bounds of the multiplicity con-
jectures are sharp if and only if S/I is Cohen-Macaulay with a pure resolution.
Herzog and Zheng have proven this sharpness result in several cases, and they have
also shown that the conjectures behave well after quotienting an ideal by a regular
sequence. Finally, Miró-Roig has proven the conjectures for determinantal ideals.
We encourage the reader to explore these papers on the arXiv.
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