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Introduction

In the last several decades, researchers interested in Hilbert functions and free
resolutions have been trying to understand the relationship between these two in-
variants. It is easy to give examples, for instance, of two ideals with the same
Hilbert function but different graded Betti numbers. This raises the question:

Question 0.1. Given a Hilbert function for a cyclic module (i.e., a polynomial
ring modulo a homogeneous ideal), what graded Betti numbers actually occur for
modules with that Hilbert function?

Hilbert showed in his 1890 paper [Hilbert] that one can compute the Hilbert
function from a graded free resolution (or simply the set of graded Betti numbers).
Thus there is an (easy) combinatorial rule that any potential set of graded Betti
numbers must satisfy. Even more promising is that given a Hilbert function, there
is a sharp upper bound for the potential graded Betti numbers; that is, there exists
a special ideal called a lex ideal whose quotient has uniquely largest graded Betti
numbers among all cyclic modules attaining that Hilbert function. This fact, first
proved independently by Bigatti and Hulett in characteristic zero and then later in
characteristic p by Pardue, bounds the search for all sets of graded Betti numbers
occurring for a given Hilbert function. Moreover, it leads one to consider the sets
of graded Betti numbers for a fixed Hilbert function as a partially ordered set.

Unfortunately, not every potential element of this partially ordered set actually
occurs, even if it satisfies the upper bound and combinatorial data. It is easy to
construct Hilbert functions for which the poset has “gaps.” Sometimes, simple
counting arguments can explain this behavior. For example, lower bounds on the
number of minimal generators an ideal must contain, or the number of d-th syzygies
it must have by a certain degree are known, and this can account for some of the
entries missing from the partial order. But these ad hoc arguments are not enough
to determine completely which sets of graded Betti numbers occur for a particular
Hilbert function. See, for example, [Evans-Richert] and Chapter 2 of [Francisco1]
for further discussion.

One idea for getting more information about what graded Betti numbers occur
for a given Hilbert function is to restrict to certain classes of ideals, thus restricting
to a subposet of the partial order. In particular, one considers only cyclic modules
with a fixed Hilbert function whose defining ideals contain regular sequences with
elements lying in certain degrees, and wishes to show that the resulting subposet
of graded Betti numbers has a unique largest element. The essence of the Lex-
plus-powers (LPP) Conjecture is that a generalization of a lex ideal, called a lex-
plus-powers ideal, gives the unique largest element of the smaller poset. The LPP
Conjecture is a generalization of a conjecture of Eisenbud, Green, and Harris, who
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first identified the ideals in question as interesting in this situation. Proving the Lex-
plus-powers Conjecture would constitute a major step forward in our understanding
of the poset of resolutions. It has the additional benefit of recovering the Bigatti-
Hulett-Pardue theorem in the Artinian characteristic zero case in a satisfying way.

Of course, simply knowing the existence of a unique largest element in a subposet
will not always be useful in determining whether a potential set of graded Betti
numbers actually occurs. Given the potential Betti diagram, one would need to
identify in what degrees an ideal with that Betti diagram has to have a regular
sequence. This can be done for some examples (see [Richert1]), but it would be
difficult in general.

Our paper is organized as follows. First, we explain the partial order on reso-
lutions for a given Hilbert function and introduce some terminology and notation
we shall use. In Section 2, we discuss properties of lex ideals that LPP ideals are
conjectured to generalize, surveying the classical work of Macaulay and the homo-
logical results of Bigatti-Hulett-Pardue. We introduce LPP ideals in Section 3 and
prove some basic properties. In Section 4, we describe the Eisenbud-Green-Harris
Conjecture and some cases that are known, and we do the same for its homological
analogue, the LPP Conjecture, in Section 5. We conclude in Section 6 with some
alternate statements of the EGH Conjecture and reductions of the LPP Conjecture.

We thank Irena Peeva for encouraging us to write this paper. We are also grateful
to Susan Cooper, Graham Evans, Tony Geramita, Jeff Mermin, Juan Migliore, Uwe
Nagel, Irena Peeva, Sindi Sabourin, and Mike Stillman for their work and helpful
conversations over the years on the topics we survey here.

We dedicate this paper to Graham Evans, our advisor and mentor. We thank
him for his time, patience, friendship, and advice through the years, and we wish
him the best in his retirement. His influence will be evident throughout this work.

1. The partial order and some notation

In this section, we give an overview of the theory of the possible resolutions
for a given Hilbert function. We introduce in detail the partial order we shall use
throughout the paper and discuss some difficulties that arise in determining what
resolutions occur for a particular Hilbert function.

Throughout, let R = k[x1, . . . , xn], where k is a field. (We shall use S to denote
particular polynomial rings.) Given a graded module R/I, let β

R/I
i,j be the (i, j)

graded Betti number of R/I; that is, β
R/I
i,j counts the number of minimal syzygies

of degree j at step i of the resolution. Alternatively, note that

β
R/I
i,j = dimk TorR

i (k,R/I)j .

To investigate the question of what resolutions can occur for a given Hilbert func-
tion, we focus on the graded Betti numbers of modules, disregarding the maps.

Suppose I and J are homogeneous ideals in R with the same Hilbert function.
We say that βR/I ≤ βR/J if and only if β

R/I
i,j ≤ β

R/J
i,j for all i and j. The inequality

has to go the same way for each graded Betti number, so this is a strong condition.
In particular, there are likely to be incomparable resolutions for a given Hilbert
function (see Example 1.4).

Example 1.1. As a first example, consider ideals in the polynomial ring S = k[a, b].
Let I = (a2, b2), and let L = (a2, ab, b3) be ideals in S. Then I and L have the same
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Hilbert function. However, their graded Betti numbers are different. The minimal
graded free resolutions are:

0 → S(−4) → S(−2)2 → S → S/I → 0

0 → S(−3)⊕ S(−4) → S(−2)2 ⊕ S(−3) → S → S/L → 0
To display the graded Betti numbers of modules, we shall often use the notation

of Grayson and Stillman’s computer algebra system Macaulay 2 [Grayson-Stillman].
The rows and columns are numbered starting from zero, with the columns repre-
senting successive steps in the resolution, and one can find βi,j in column i and row
j − i in the table. The graded Betti diagrams of S/I and S/L are:

S/I: total: 1 2 1 S/L: total: 1 3 2
0: 1 . . 0: 1 . .
1: . 2 . 1: . 2 1
2: . . 1 2: . 1 1

Note that L has an extra generator and first syzygy of degree three not present
in the minimal resolution of I. Both I and L have two generators of degree two
and a first syzygy of degree four. Thus βS/I ≤ βS/L.

Though there can be many sets of graded Betti numbers for a given Hilbert
function, all will have the same alternating sum along the upward sloping diagonals
in the graded Betti diagram. That is, if one holds the degree d constant and takes
the alternating sum of the number of syzygies of degree d at each place in the
minimal resolution, that number will be the same for any module with the same
Hilbert function. This is a consequence of the following result that one can find in
Stanley’s “green book” [Stanley]. (Note that although we write the sum over d on
the right-hand side as an infinite sum, the sum is really finite.)

Theorem 1.2. If M is an R = k[x1, . . . , xn]-module, then
∞∑

d=0

H(M,d)td =

∑∞
d=0

∑n
i=0(−1)iβM

i,dt
d

(1− t)n
.

One can view Theorem 1.2 as describing how to read the Hilbert function off a
resolution. Recall that the Hilbert function encodes vector space dimensions, and

1
(1−t)n is the generating function for the Hilbert series of R. Then the vector space
dimension of R/I in degree d is equal to the alternating sum of the dimensions of
the degree d components of the free modules in a free resolution. Since the βi,j

keep track of the degrees of the generators of these free modules, it follows that
H(R/I, d) =

Pn
i=0(−1)iβi,dtd

(1−t)n .

Example 1.3. Let I = (a2, b2) and L = (a2, ab, b3) ⊂ S = k[a, b] as in Example 1.1.
Then the left-hand side is

∞∑
d=0

H(S/L, d)td = 1 + 2t + t2.

The right-hand side is

1 + 0t− 2t2 + (1− 1)t3 + t4

(1− t)2
= 1 + 2t + t2.
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The computation for S/I is identical except that instead of having a (1− 1)t3 term
in the numerator of the right-hand side, we just have 0t3, which is, of course, the
same.

If one restricts to ideals in the polynomial ring in two variables, the partially
ordered set behaves nicely. Charalambous and Evans showed that given a Hilbert
function H for a module k[a, b]/I, there is a unique maximal element in the partial
order, a unique minimal element, and all possibilities (that Theorem 1.2 allows) in
between occur for some module [Charalambous-Evans1]. When one adds another
variable, however, the situation need not be so simple.

Example 1.4. To illustrate the increasing complexity in more than two vari-
ables, we present an example of Charalambous and Evans [Charalambous-Evans1]
that shows there may be incomparable minimal elements in the partially ordered
set of resolutions for a given Hilbert function. Let S = k[a, b, c], and consider
the Hilbert function H = (1, 3, 4, 2, 1). Let I = (a3, b3, c3, ac, bc), and let J =
(a5, b2, c2, a2b, a2c). Then S/I and S/J both have Hilbert function H.

S/I: total: 1 5 6 2 S/J : total: 1 5 6 2
0: 1 . . . 0: 1 . . .
1: . 2 1 . 1: . 2 . .
2: . 3 4 1 2: . 2 4 .
3: . . . . 3: . . . 1
4: . . 1 1 4: . 1 2 1

Clearly the resolutions of S/I and S/J are incomparable. If there is a resolution
below both, the rank of the free module at step three in the resolution must be
one. Since any module with Hilbert function H is Artinian, it is Cohen-Macaulay,
and therefore a resolution below both S/I and S/J would be the resolution of
a Gorenstein module. But H is not a symmetric Hilbert function, so we have a
contradiction. Thus since there can be no resolution below both the resolutions of
S/I and S/J , there are incomparable minimal elements in the partially ordered set.

Armed with this partial order, we can phrase a number of questions about what
graded free resolutions occur for a given Hilbert function in terms of the structure
of the partially ordered set. For example, we have seen that there is not always a
unique minimal element in the poset. In the next section, we shall see that there
is always a unique maximal element. Therefore the search for all possible sets
of graded Betti numbers for a particular Hilbert function is a bounded problem.
However, the behavior between the maximal element and the minimal element(s)
can be unpredictable, and determining whether a particular potential set of graded
Betti numbers can occur is generally difficult.

In this paper, we shall not consider all ideals with a given Hilbert function
but rather only the ideals that contain a regular sequence in prescribed degrees.
Recall that a sequence f1, . . . , fr of elements of R = k[x1, . . . , xn] is called a reg-
ular sequence if for all i > 1, fi is a nonzerodivisor on R/(f1, . . . , fi−1), and
(f1, . . . , fr) 6= R. The example we shall use most often is that if ai > 0 for each i,
then xa1

1 , . . . , xan
n is a regular sequence.

We will often be interested in the degrees of a regular sequence. Suppose
f1, . . . , fn is a regular sequence, and deg fi = ai for all i. We say that f1, . . . , fn
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is an (a1, . . . , an)-sequence, which we will sometimes abbreviate as an A-sequence.
Additionally, if an ideal I contains a subideal (f1, . . . , fn), where f1, . . . , fn is a
regular sequence, we say that I is an (a1, . . . , an)-ideal. For example, in k[a, b, c],
(a3, b3, c3, a2b, ab2, bc2) is a (3, 3, 3)-ideal because it contains the ideal (a3, b3, c3).
Note that it is also a (3, 3, 4)-ideal since (a3, b3, c4) is a subideal.

2. Lex Ideals

In this section we discuss the fact that the partial order formed by the sets of
graded Betti numbers of quotients attaining a given Hilbert function is sharply
bounded. This requires identifying an ideal exhibiting the required maximal be-
havior. In order to do this, we need to give an order on the monomials of R.

Definition 2.1. The lexicographic (lex) order on R is the total order defined
as follows. First we choose an order for the variables, x1 >lex x2 >lex · · · >lex xn.
Then we say that xα1

1 · · ·xαn
n >lex xβ1

1 · · ·xβn
n if αi > βi for the first index i such

that αi 6= βi. We will write > to denote >lex.

Example 2.2. If S = k[x1, x2, x3] then the monomials of degree 3 in descending
lex order are x3

1, x2
1x2, x2

1x3, x1x
2
2, x1x2x3, x1x

2
3, x3

2, x2
2x3, x2x

2
3, x3

3. We could
also use the lex order to make comparisons across degrees, so x1x2x3 > x4

2, for
instance, but we almost never do this because we are interested in homogeneous
behavior.

We can now define a lex ideal.

Definition 2.3. A monomial ideal I ⊂ R is called lex if for each j ≥ 0, (I ∩ Rj)
is generated as a k-vector space by the first dimk(I ∩Rj) monomials of degree j in
descending lex order.

Example 2.4. Suppose again that S = k[x1, x2, x3]. Then

J = (x3
1, x2

1x2, x2
1x3, x1x

2
2, x3

2)

is not lex because (J ∩ S3) is not generated as a k-vector space by the first 5
monomials in lex order, x3

1 > x2
1x2 > x2

1x3 > x1x
2
2 > x1x2x3. Also I = (x3

1, x
2
1x2x3)

is not lex because (I ∩ S4) = (x4
1, x3

1x2, x3
1x3, x2

1x2x3), is not generated as a k-
vector space by the first dimk(I ∩ S4) = 4 monomials in lex order, x4

1 > x3
1x2 >

x3
1x3 > x2

1x
2
2. The ideal Q = (x3

1, x2
1x

2
2, x2

1x2x3) repairs this, and since it is an
easy exercise to show that an ideal is lex if and only if it is generated in degree j
by the first dimk(I ∩Rj) elements in lex order for degrees in which it has minimal
generators, it follows that Q is lex.

As we shall discuss later in the section, given a Hilbert function H, the lex ideal
attaining H has everywhere largest graded Betti numbers (among all other ideals
with Hilbert function H). Of course, this takes for granted a crucial and as yet
undiscussed step: that given a Hilbert function H, there exists a lex ideal L such
that H(R/L) = H. This is a classical result of Macaulay.

Theorem 2.5 (Macaulay’s theorem for Hilbert functions). A function H : N → N
with H(0) = 1 is the Hilbert function of a cyclic module if and only if there is a lex
ideal L such that H(R/L) = H.
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It follows, of course, that given an ideal I ⊂ R, there is a lex ideal L such that
H(R/I) = H(R/L). In fact, once we know that such an ideal exists, it is very
easily obtained (and is clearly unique). We simply take L to be the ideal generated
by the first H(I, d) = H(R, d)−H(R/I, d) d-forms in lex order for all d.

Example 2.6. Consider the ideal I = (x1x3 + x2
2, x1x2, x3

3, x2
2x3, x4

1). The
Hilbert function of S/I is H(S/I) = (1, 3, 4, 2), while H(S) = (1, 3, 6, 10, 15, . . . ).
Thus H(I) = (0, 0, 2, 8, 15, . . . ), so let L = L1 + L2 + L3 + L4 + L5 + · · · where

L1 = (0),
L2 = (x2

1, x1x2),
L3 = (x3

1, x2
1x2, x2

1x3, x1x
2
2, x1x2x3, x1x

2
3, x3

2, x2
2x3),

L4 = (x4
1, x3

1x2, x3
1x3, x2

1x
2
2, x2

1x2x3, x2
1x

2
3, x1x

3
2, x1x

2
2x3,

x1x2x
2
3, x1x

3
3, x4

2, x3
2x3, x2

2x
2
3, x2x

3
3, x4

3) = S4

L5 = S5

...

The ideal L is obviously lex as it is generated by lex segments, and we can easily
check that the Hilbert function of S/L is H(S/L) = (1, 3, 4, 2) as expected. A
minimal generating set for L is L = (x2

1, x1x2, x1x
2
3, x3

2, x2
2x3, x2x

3
3, x4

3).

There are several equivalent formulations of Macaulay’s theorem to which we
now turn our attention. Each foreshadows various aspects of the conjectures to-
wards which we are moving. We consider first the usual presentation of Macaulay’s
theorem, which is a statement about Hilbert function growth; the original Eisenbud-
Green-Harris conjecture that we discuss in Section 4 was an attempt to generalize
this behavior. Then, we will explore the version of Macaulay’s theorem dealing with
minimal generators. This motivates the idea that lex-plus-powers ideals should have
largest graded Betti numbers, the assertion of the Lex-plus-powers Conjecture, con-
sidered in Section 5.

Proposition/Definition 2.7. Let a, d ∈ N with d > 0. Then there are unique
integers ad > ad−1 > · · · > a1 ≥ 0 such that a =

(
ad

d

)
+

(
ad−1
d−1

)
+ · · · +

(
a1
1

)
. The

sum
(
ad

d

)
+

(
ad−1
d−1

)
+ · · ·+

(
a1
1

)
is the Macaulay expansion of a with respect to d.

Example 2.8. The Macaulay expansion for 17 with respect to 3, for instance, is(
5
3

)
+

(
4
2

)
+

(
1
1

)
= 10 + 6 + 1 = 17,

while the expansion for 16 with respect to 3 is(
5
3

)
+

(
4
2

)
+

(
0
1

)
= 10 + 6 + 0 = 16.

Given a and d, the algorithm for finding the ai is quite simple. Let ad be the
largest integer such that

(
ad

d

)
≤ a, and repeat. That is, let ad−1 be the largest

integer such that
(
ad−1
d−1

)
≤ a−

(
ad

d

)
, ad−2 be the largest integer such that

(
ad−2
d−2

)
≤

a−
(
ad

d

)
−

(
ad−1
d−1

)
, and so on.

These Macaulay expansions, whose existence can be proved using induction, turn
out to be instrumental in describing exactly how much the Hilbert function of a
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cyclic module can grow from one degree to the next. This growth is controlled by
the following arithmetic operation.

Definition 2.9. Let a ∈ N be given. Then for d ∈ N+, define a〈d〉 to be the integer

a〈d〉 =
(

ad + 1
d + 1

)
+

(
ad−1 + 1

d

)
+ · · ·+

(
a1 + 1

2

)
,

where

a =
(

ad

d

)
+

(
ad−1

d− 1

)
+ · · ·+

(
a1

1

)
is the Macaulay expansion of a with respect to d.

Example 2.10. Consider again the Macaulay expansion from example 2.8. Then
17〈3〉 is(

5 + 1
3 + 1

)
+

(
4 + 1
2 + 1

)
+

(
1 + 1
1 + 1

)
=

(
6
4

)
+

(
5
3

)
+

(
2
2

)
= 15 + 10 + 1 = 26.

Macaulay’s theorem can now be stated in the following terms.

Theorem 2.11 (Macaulay’s theorem for Hilbert function growth). Let H : N → N
be a function with H(0) = 1. Then H is the Hilbert function of some cyclic R-
module if and only if H(d + 1) ≤ H(d)〈d〉 for all d ≥ 1.

Example 2.12. Consider the sequence H = (1, 3, 6, 8, 9, 8, 9). Then we have

H(1) =
(

3
1

)
H(2) =

(
4
2

)
+

(
0
1

)
H(3) =

(
4
3

)
+

(
3
2

)
+

(
1
1

)
H(4) =

(
5
4

)
+

(
4
3

)
+

(
1
2

)
+

(
0
1

)
H(5) =

(
6
5

)
+

(
4
4

)
+

(
3
3

)
+

(
1
2

)
+

(
0
1

)
H(6) =

(
7
6

)
+

(
5
5

)
+

(
4
4

)
+

(
2
3

)
+

(
1
2

)
+

(
0
1

)
Now note that H(0) = 1 and

H(2) = 6 ≤ 6 =
(

3 + 1
1 + 1

)
= H(1)〈1〉

H(3) = 8 ≤ 10 =
(

4 + 1
2 + 1

)
+

(
0 + 1
1 + 1

)
= H(2)〈2〉

H(4) = 9 ≤ 10 =
(

4 + 1
3 + 1

)
+

(
3 + 1
2 + 1

)
+

(
1 + 1
1 + 1

)
= H(3)〈3〉

H(5) = 8 ≤ 11 =
(

5 + 1
4 + 1

)
+

(
4 + 1
3 + 1

)
+

(
1 + 1
2 + 1

)
+

(
0 + 1
1 + 1

)
= H(4)〈4〉

H(6) = 9 ≤ 9 =
(

6 + 1
5 + 1

)
+

(
4 + 1
4 + 1

)
+

(
3 + 1
3 + 1

)
+

(
1 + 1
2 + 1

)
+

(
0 + 1
1 + 1

)
= H(5)〈5〉
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We conclude that there is an ideal I which attains this Hilbert function. We can find
such an ideal (once we know that Theorem 2.11 and Theorem 2.5 are equivalent), by
finding following the algorithm given directly before (and utilized in) Example 2.6.

To go between Theorem 2.11 and Theorem 2.5 requires proving that if L is a
lex ideal, then H(R/L≤d, d + 1) = H(R/L, d)〈d〉, where L≤d refers to the ideal
generated by all forms in L of degree at most d. That lex ideals behave this way
is not surprising given their very combinatorial description, but the equivalence
gives no hint how to prove either version of the theorem. The best modern proof
of Macaulay’s theorem is by way of Theorem 2.11 and due to Green [Green]. He
begins with the following result.

Theorem 2.13 (Green’s theorem). Let I be an ideal of R (over an infinite field
k) and

(
ad

d

)
+ · · ·+

(
a1
1

)
be the Macaulay expansion of H(R/I, d). Then

H
(
R/(I, h), d

)
≤

(
ad − 1

d

)
+ · · ·+

(
a1 − 1

1

)
for a general linear form h.

The proof is by double induction on the dimension of the ring and the degree
(see [Bruns-Herzog] for a beautiful algebraic version).

Example 2.14. Green’s theorem allows one to bound below the drop in the Hilbert
function of a module after one quotients by a (generic) element of degree one. For
instance, consider the ideal

I = (a2c, b3, c4, b2c3, abc3, ab2c2, a3b2, a4b, a5).

The Hilbert function of S/I is H(S/I) = (1, 3, 6, 8, 8), and we note that H(S/I, 3) =
8 =

(
4
3

)
+

(
3
2

)
+

(
1
1

)
. Green’s theorem guarantees the existence of a linear form h such

that H(S/(I, h), 3) ≤ 2 =
(
4−1
3

)
+

(
3−1
2

)
+

(
1−1
1

)
. It is worth noting that none of h =

a, h = b, or h = c work in this instance—in each of these cases H(S/(I +h), 3) = 3.
But h = a + b behaves as required; that is, H(S/(I, a + b), 3) = 2.

Macaulay’s theorem now follows as a corollary to Theorem 2.13. One observes
from the short exact sequence

0 → h(R/I)d → (R/I)d+1 → (R/(I, h))d+1 → 0,

where h is a general linear form, that H(R/I, d+1) ≤ H(R/I, d)+H(R/(I, h), d+1),
applies Green’s theorem to part of the expression on the right, and proceeds using
purely numerical results about Macaulay expansions.

Macaulay’s theorem is also equivalent to the following statement about genera-
tors.

Theorem 2.15. Suppose that I ⊂ R and L is a lex ideal such that H(R/I) =
H(R/L). Then L contains more minimal generators than I in each degree. In
particular, βL

1,j ≥ βI
1,j for all j ∈ N.

Thus, extremal Hilbert function growth (as in the Hilbert function growth ver-
sion of Macaulay’s theorem) is equivalent to extremal behavior with respect to
first graded Betti numbers. In 1994 Bigatti and Hulett proved independently (and
very nearly simultaneously) the following extension of Macaulay’s theorem in char-
acteristic zero [Bigatti, Hulett]. Pardue showed the characteristic p case in 1998
[Pardue].
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Theorem 2.16. Let I ⊂ R and L be the lex ideal such that H(R/I) = H(R/L).
Then βL

i,j ≥ βI
i,j for all i = 1, . . . , n and j ∈ N.

Example 2.17. Consider again the ideal I = (a3, b3, c3, ac, bc) from Example 1.4.
As previously mentioned, the Hilbert series of S/I is H(S/I) = (1, 3, 4, 2, 1), and
its Betti diagram is

S/I: total: 1 5 6 2
0: 1 . . .
1: . 2 1 .
2: . 3 4 1
3: . . . .
4: . . 1 1

The lex ideal with the same Hilbert series is L = (a2, ab, ac2, b3, b2c, bc3, c5).
As the Bigatti-Hulett-Pardue result guarantees, the Betti diagram of S/L,

S/I: total: 1 7 10 4
0: 1 . . .
1: . 2 1 .
2: . 3 5 2
3: . 1 2 1
4: . 1 2 1

is componentwise larger than that of S/I.

That Macaulay’s theorem is a special case of the Bigatti-Hulett-Pardue theorem
is clear from Theorem 2.15, the generator version of Macaulay’s theorem.

The three proofs of this theorem, although quite different from each other, all
resort at some point to a generic change of coordinates. This turns out, as we
shall see in Sections 4 and 5, to be a major obstruction in generalizing the Bigatti-
Hulett-Pardue theorem, and thus the technique is worth discussing here.

The first step in both Bigatti and Hulett’s proofs is to specialize to the strongly
stable case, where there is enough combinatorial data to solve the problem. The
idea of the specialization is to pass from a given ideal I to a strongly stable ideal
I ′ which has the same Hilbert function as I and graded Betti numbers which are
no smaller. These three conditions are easily satisfied (in characteristic zero) by
the so-called generic initial ideal of I. The generic initial ideal of I is the ideal
obtained by first taking a generic change of basis, then forming the ideal consisting
of initial forms (that is, consisting of the collection of monomials each of which
is the largest element in the monomial order of some homogeneous element of I
after the basis change). It is well known that the resulting ideal, called Gin(I), is
strongly stable, has the same Hilbert function as I, and has no smaller graded Betti
numbers (because the graded Betti numbers are upper-semicontinuous [Galligo]).

Pardue avoids the characteristic zero requirement by taking a more complicated
distraction. He first lifts a given ideal I to the ring k[zi,j ], where 1 ≤ i ≤ n and
1 ≤ j ≤ J for J sufficiently large, obtaining

I(p) =


n∏

i=1

αi∏
j=1

zi,j : xα1
1 · · ·xαn

n is a minimal generator of I

 .
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Then I(p) can be projected to R as follows: Choose a generic collection of linear
forms {li,j}, where i, j vary with the indices of the zi,j , let σL(zi,j) = li,j , and
compute σL(I(p)) ⊂ R. Finally, make a generic change of basis on σL(I(p)), and pass
to the initial ideal. Pardue is able to show that the Hilbert function is maintained
by this process, the graded Betti numbers are no smaller than before, and that after
finitely many iterations, the result is a lex ideal. It is quite a remarkable proof.

Now that we know that the partial order of sets of graded Betti numbers of
ideals attaining a given Hilbert function is bounded, we can turn our attention to
the smaller elements in this partial order. Theorem 1.2 is a fundamental result that
tells us what possibilities to consider below the lex ideal. Of course, this still leaves
a large number of possible resolutions to consider. We can, without too much
difficultly, discover which of these are attainable by monomial ideals–one simply
asks the computer to list the monomial ideals with the given Hilbert function and
then checks their resolutions (of course, for larger problems, the computer may
actually require an exceedingly long time to finish the calculation). This is not
enough, however, as it is known that monomial ideals do not give all possible
resolutions. There are several ad hoc methods which have been brought to bear in
various situations [Peeva, Evans-Richert, Richert1], but without too much trouble
one finds examples which defeat these ideas.

What needs to be done next is evidently to discover a finer structure on the poset
of possible resolutions for a given Hilbert function. One idea is to attempt to filter
this poset by regular sequence degrees. That is, given a Hilbert function H and a
increasing list of integers a1 ≤ · · · ≤ an, we consider sets of graded Betti numbers
corresponding to ideals attaining H and containing a regular sequence whose forms
have degrees a1, . . . , an. The hope is that such a subset of the larger poset also has
a unique largest element. The candidate conjectured to attain the unique largest
graded Betti number turns out to be a natural generalization of a lex ideal, and it
is to these ideals that we turn out attention in the next section.

3. Lex-plus-powers ideals

As we discussed in the previous section, studying the partially ordered set of all
resolutions for a given Hilbert function is difficult. To work with a simpler object,
we restrict our study to ideals that contain a regular sequence in prescribed degrees.
In this section, we shall investigate Artinian ideals in R = k[x1, . . . , xn], requiring
that they contain a regular sequence of maximal length in degrees a1 ≤ · · · ≤ an.

We begin by defining the natural analogue of lex ideals in this setting.

Definition 3.1. Let a1 ≤ · · · ≤ an be positive integers. We call L an (a1, . . . , an)
−lex-plus-powers (LPP) ideal if:
(1) L is minimally generated by xa1

1 , . . . , xan
n and monomials m1, . . . ,ml, and

(2) If r is a monomial, deg r = deg mi, and r >lex mi, then r ∈ L.

Example 3.2. We check that L = (x2
1, x

3
2, x

3
3, x1x

2
2, x1x2x3) is a (2, 3, 3)−LPP

ideal. It contains appropriate powers of the variables, and we need only check the
second condition for the other two generators. Since x3

1, x2
1x2, and x2

1x3 are all in
L, L is an LPP ideal.

In general, one builds an LPP ideal by first forming the regular sequence of
maximal length. This is the “plus powers” portion of the generating set. Then, in
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order to get the desired Hilbert function, one adds more generators in descending
lexicographic order in each degree, the “lex” part of the ideal.

We begin our analysis of LPP ideals by developing some properties of LPP ideals
that correspond to useful characteristics of lexicographic ideals. We obtain tools to
assist in our analysis of the relationship among conjectures on LPP ideals.

First, we find a basis in each degree for a quotient by an LPP ideal.

Proposition 3.3. Let L be an (a1, . . . , an)−LPP ideal in R = k[x1, . . . , xn]. Then
the smallest H(R/L, d) monomials in lexicographic order in degree d not divisible
by any xai

i form a basis for (R/L)d.

Proof. Suppose that xe = xe1
1 · · ·xen

n ∈ L is not divisible by any xai
i . Let xd =

xd1
1 · · ·xdn

n be a monomial not divisible by any xai
i such that deg xe = deg xd and

xd >lex xe. We show that xd ∈ L. If xe is a minimal generator of L, then xd ∈ L by
the definition of an LPP ideal. If not, then there exists a minimal generator s of L
with s = xe1−g1

1 · · ·xen−gn
n , each gi ≥ 0, and some gi > 0. Let m be the monomial

of degree deg s equal to
m = xd1

1 · · ·xdi−1
i−1 xri

i ,

where i is chosen such that

d1 + · · ·+ di−1 < deg s ≤ d1 + · · ·+ di

and such that deg m = deg s.
We show that m ≥lex s. Since deg m = deg s, the definition of an LPP ideal

would then imply that m ∈ L. Since m divides xd, this proves that xd ∈ L.
First, suppose that d1 = e1− g1, . . . , di−1 = ei−1− gi−1. Then ri ≥ ei− gi since

deg m = deg s, and m ≥lex s. Otherwise, for some j < i, we have d1 = e1− g1, . . . ,
dj−1 = ej−1−gj−1, and dj 6= ej−gj . If dj < ej−gj , then d1 ≤ e1, . . . , dj−1 ≤ ej−1,
and dj < ej − gj ≤ ej . But this contradicts the fact that xd >lex xe. Therefore
dj > ej − gj , and m ≥lex s. �

Corollary 3.4. Suppose that L1 and L2 are two (a1, . . . , an)−LPP ideals such that
H(R/L1, d) = H(R/L2, d), and suppose that all the minimal generators of L1 and
L2 that are not pure powers have degree at most d. Then (L1)d+1 = (L2)d+1.

Proof. We have (L1)d = (L2)d, and the only new generators that occur for either
ideal in degree d + 1 are possibly some xd+1

i . Therefore (L1)d+1 = (L2)d+1. �

In other words, specifying the ai and the value of the Hilbert function in degree
d fully describes the monomials in an (a1, . . . , an)−LPP ideal in degree d. Conse-
quently, this information determines the Hilbert function in degree d+1, assuming
any minimal generators in degree d + 1 are pure powers.

It is easy to see that every Artinian lex ideal is an LPP ideal. Hence given an
Artinian Hilbert functionH (i.e., a Hilbert function that is eventually zero), because
there is a quotient by a lex ideal attaining H, there is a quotient by an LPP ideal
attaining H. However, even if there is an ideal corresponding to H containing a
regular sequence in degrees a1, . . . , an, the following easy example shows there need
not be an (a1, . . . , an)-LPP ideal corresponding to H.

Example 3.5. Let R = k[x1, . . . , xn], and letH be the Hilbert function (1). Then if
m = (x1, . . . , xn), R/m has Hilbert function H, and it contains the regular sequence
x2

1, . . . , x
2
n. However, there is obviously no (2, . . . , 2)-LPP ideal attaining the Hilbert

function (1).
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Given an Artinian Hilbert function H, it is easy to find all the LPP ideals
corresponding to H using a computer algebra system. (There is, for example, a
Macaulay 2 package available from the first author that will do the computations.)
It is not obvious a priori, however, for which sequences a1 ≤ · · · ≤ an there will be
an (a1, . . . , an)-LPP ideal. The following result, first conjectured by Evans, gives a
partial answer; it will appear in a forthcoming paper by the second author.

Theorem 3.6. Let a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bn, and c1 ≤ · · · ≤ cn be positive
integers. Suppose that ai ≤ bi ≤ ci for all i. If there exist (a1, . . . , an)-LPP and
(c1, . . . , cn)-LPP ideals corresponding to the Hilbert function H, then there exists a
(b1, . . . , bn)-LPP ideal corresponding to H.

In other words, the set of LPP ideals for a given Hilbert function satisfies a
convexity property. The theorem is not hard to prove for ideals in two variables
and amounts to looking at the difference in the minimal generating sets of an
(a1, a2)-LPP ideal and an (a1, a2 + 1)−LPP ideal with the same Hilbert function.
In more variables, the situation is more complicated.

Example 3.7. Let S = k[a, b, c], and consider the Hilbert function H = (1, 3, 3, 1).
S/(a2, b2, c2) has Hilbert function H, and (a2, b2, c2) is a (2, 2, 2)-LPP ideal. The
lex ideal corresponding to H is (a2, b3, c4, ab, ac, b2c, bc2), which is a (2, 3, 4)-LPP
ideal. By Theorem 3.6, there exist LPP ideals corresponding to H with power
sequences (2, 2, 3), (2, 2, 4), and (2, 3, 3).

Since LPP ideals are the analogue of lex ideals when we consider only ideals with
a maximal length regular sequence in prescribed degrees, it is natural to investigate
generalizations of Macaulay’s Theorem and the Bigatti-Hulett-Pardue Theorem. If
there are corresponding results in the new setting, LPP ideals should play the role
of lex ideals, meaning they should have largest Hilbert function growth and graded
Betti numbers. We make these observations precise in the next two sections.

4. The EGH Conjecture and its ramifications

Lex-plus-powers ideals were first conjectured to exhibit extremal behavior in
[Eisenbud-Green-Harris1]. Eisenbud, Green, and Harris made this assertion while
exploring the following geometric statement, known as the Generalized Cayley-
Bacharach Conjecture:

Conjecture 4.1. Let Ω ⊂ Pr be a complete intersection of quadrics. Any hyper-
surface of degree t that contains a subscheme Γ ⊂ Ω of degree strictly greater than
2r − 2r−t must contain Ω.

The Generalized Cayley-Bacharach Conjecture claims that a form of degree t
which vanishes at 2r − 2r−t + 1 (or more) points of a complete intersection in Pr

defined by forms of degree 2 must vanish on all the points in that intersection.
Conjecture 4.1 is not known in very many cases. Eisenbud, Green, and Harris

give a proof for r ≤ 7 [Eisenbud-Green-Harris2]. When Ω is a hypercube, Riehl and
Evans [Riehl-Evans], have shown that the bounds hold. Finally, Davis, Geramita,
and Orecchia [Davis-Geramita-Orecchia] have cast the conjecture in the language
of Gorenstein rings.

More interesting for the current discussion was Eisenbud, Harris, and Green’s
observation that the following stronger conjecture implies the Generalized Cayley-
Bacharach Conjecture.
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Conjecture 4.2 (Eisenbud, Green, Harris Conjecture in degree 2). Suppose that
I ⊂ R is an ideal such that I2 contains a regular sequence of maximal length. Then
H(R/I, d + 1) ≤

(
ad

d+1

)
+

(
ad−1

d

)
+ · · ·+

(
a1
2

)
, where

(
ad

d

)
+

(
ad−1
d−1

)
+ · · ·+

(
a1
1

)
is the

unique Macaulay expansion for H(R/I, d).

Example 4.3. Consider the Hilbert function (1, 4, 10, 8, 2), and note that the
Macaulay expansion for 8 with respect to 4 is

(
5
4

)
+

(
3
3

)
+

(
2
2

)
+

(
1
1

)
. Because

2 6≤ 1 =
(
5
5

)
+

(
3
4

)
+

(
2
3

)
+

(
1
2

)
, the conjecture (which is actually known for dimension

≤ 5, as we will discuss below) implies that there does not exist an ideal containing
a (2, 2, 2, 2)-regular sequence and attaining the Hilbert function (1, 4, 10, 8, 2).

The Macaulayesque flavor of this conjecture is made even stronger after observing
that the growth described in Conjecture 4.2 is exactly that of a (2, . . . , 2)-lex-plus-
powers ideal.

At the very end of their paper, Eisenbud, Green, and Harris mention that re-
stricting to maximal regular sequences in degree two is artificial, and that a similar
statement should hold for regular sequences in arbitrary degrees. In [Richert2,
Francisco2], this conjecture is recorded in the following form:

Conjecture 4.4 (Eisenbud, Green, Harris). Let I ⊂ R contain an A-regular se-
quence, and suppose there exists an A-lex-plus-powers ideal L such that H(R/I, d) =
H(R/L, d). Then

H(R/L〈d〉, d + 1) ≥ H(R/I, d + 1).

The notation L〈d〉, given an A-lex-plus-powers ideal L, denotes the ideal gener-
ated by L≤d + (xa1

1 , . . . , xan
n ). We refer to this statement as the EGH Conjecture.

Example 4.5. Consider the Hilbert function H = (1, 3, 6, 8, 8). If EGH is true,
then no ideal I with Hilbert function H(S/I) = H can contain a (3, 4, 5)-regular
sequence. This follows by simply forming a (3, 4, 5)-lex-plus-powers ideal L with
H(R/L, d) = 8 (L = (a2b2, a2bc, a2c2, a3, b4, c5) will suffice), and computing that
H(S/L〈3〉, 4) = 7 < 8.

A few remarks are in order. First, we note that, like Conjecture 4.2 above, this is
a statement which bounds Hilbert function growth by lex-plus-powers growth. It is
possible to state the theorem numerically (see [Richert-Sabourin, Cooper-Roberts]),
but the result is not so simple or binomial. Second, the hypothesis that there exists
an (a1, . . . , an)-lex plus powers ideal such that H(R/L, d) = H(R/I, d) is present
only to rule out degenerative cases (see Example 3.5). This is made clear by the
following equivalent form of the EGH Conjecture.

Conjecture 4.6. Let H be a Hilbert function and (a1, . . . , an) = A be a list of
degrees such that there exists an ideal I with H(R/I) = H, I contains an A-regular
sequence, and I does not contain a (b1, . . . , bn) = B-regular sequence with bi ≤ ai

for all i = 1, . . . , n and bj < aj for some j ∈ {1, . . . , n}. Then there is an A-lex-
plus-powers ideal attaining H.

Thus, according to the conjecture, if I contains an A-regular sequence, then an
A-lex-plus-powers ideal with Hilbert function equal to H(R/I) fails to exist only if
there is some B < A such that I contains an B-regular sequence, and there does
exist a B-lex-plus-powers ideal with the same Hilbert function.

To round out the comparison to Macaulay’s theorem, we note that the EGH
is also equivalent to the following conjecture (and the proof of this equivalence is
exactly the same as in the lex case).
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Conjecture 4.7. Suppose that I contains an A-regular sequence and that there
exists an A-lex-plus-powers ideal L such that H(R/I) = H(R/L). Then βL

1,j ≥ βI
1,j

for all j ∈ N.

Example 4.8. Let I be an ideal in S = k[a, b, c] with Hilbert function H(S/I) =
(1, 3, 5, 4, 1) and suppose that I contains a (2, 3, 3)-regular sequence. If EGH is
true, then we claim that I does not have any minimal generators of degree 5. This
is because L = (a2, ab2, c3, b3, abc2) is (2, 3, 3)-lex-plus-powers, has Hilbert function
(1, 3, 5, 4, 1), and contains no 5-forms.

One can show, when k has characteristic zero, that lex ideals contain the latest
possible regular sequences. In particular, if we think of a lex ideal L as an A-
lex-plus-powers ideal, then any ideal with Hilbert function H(R/L) contains an
A-regular sequence. (See [Richert2] for a proof.) Thus Macaulay’s theorem in the
characteristic zero Artinian case is simply a special case of EGH.

EGH is known in very few cases. One can give a combinatorial proof for mono-
mial ideals with a theorem of Clements and Lindsröm [Clements-Lindström]. It is
also known to hold for n = 2 variables [Richert2, Richert-Sabourin]. One notes
that Gotzmann’s persistence theorem [Gotzmann] forces H(S/I, i) > H(S/I, i + 1)
for all i ≥ d if I ⊂ S = k[a, b] is such that Id contains a maximal regular sequence;
then one demonstrates that the consecutive drop in the Hilbert function of the cor-
responding lex-plus-powers ideal L in degrees i ≥ d can be bounded above by one.
The proof, unfortunately, does not extend to three variables. In addition, there are
a few other, even smaller cases (for instance, the second author has demonstrated
in unpublished work that the conjecture in degree 2 holds for n ≤ 5).

Recently, Cooper has done some work in a more geometric direction. Consider
a finite set of distinct points in P2 formed by a complete intersection of type (a, b),
written CI(a, b). That is, the set of points is the zero set of a complete intersection
ideal generated by two polynomials of degrees a and b. Given a Hilbert function H,
let ∆H be the first difference function, so ∆H = (1,H(1)−H(0),H(2)−H(1), . . . ).
Cooper showed in [Cooper] that ∆H is the Hilbert function of a subset of a CI(a, b)
if and only if ∆H satisfies a growth condition given by the theorem Clements-
Lindström, which amounts to the growth condition coming from the EGH Conjec-
ture. Cooper also studies subsets of complete intersections CI(a, b, c) in P3 in her
forthcoming Ph.D. thesis; she has similar results when a = 2, a = 3, c ≥ a + b + 1,
or (a, b, c) = (4,m, n), where m and n are not both 4.

We explore a closely related conjecture for free resolutions in the next section.

5. The LPP Conjecture

The EGH Conjecture discussed in the last section is the analogue to Macaulay’s
Theorem. In this section, we introduce and explore the LPP Conjecture, which is
the analogue of the Bigatti-Hulett-Pardue Theorem.

The Bigatti-Hulett-Pardue Theorem says that the lex ideal has the largest graded
Betti numbers among all ideals with the same Hilbert function. The natural ex-
tension of that result is that an LPP ideal should have the largest graded Betti
numbers among all ideals with the same Hilbert function and regular sequence in
the same degrees. We give the precise statement below. Its origin is a bit murky,
but it is perhaps best described as due to Charalambous and Evans and inspired
by the work of Eisenbud, Green, and Harris. The conjecture first appeared in a
paper of Evans and the second author [Evans-Richert].
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Conjecture 5.1 (LPP Conjecture). Let L ⊂ R be an (a1, . . . , an)−LPP ideal.
Suppose I ⊂ R is a homogeneous ideal with the same Hilbert function that contains
a regular sequence in degrees a1, . . . , an. Then βR/I ≤ βR/L.

The LPP Conjecture is stronger than the EGH Conjecture, just as the Bigatti-
Hulett-Pardue Theorem implies Macaulay’s Theorem. See [Francisco1] for a de-
tailed argument. Thus a solution to the LPP Conjecture would also prove some-
thing geometric, the Generalized Cayley-Bacharach Conjecture.

We give an example to illustrate the LPP Conjecture.

Example 5.2. Let S = k[a, b, c], and let I be an ideal generated by generic poly-
nomials of degrees two, three, three, and four. Let L be the (2, 3, 3)−LPP ideal
(a2, b3, c3, ab2c). Then H(S/I) = H(S/L) = (1, 3, 5, 5, 2). The LPP Conjecture as-
serts that βS/I ≤ βS/L. The Betti diagrams of the two modules are the following:

S/I: total: 1 4 5 2 S/J : total: 1 4 6 3
0: 1 . . . 0: 1 . . .
1: . 1 . . 1: . 1 . .
2: . 2 . . 2: . 2 . .
3: . 1 4 . 3: . 1 4 1
4: . . 1 2 4: . . 2 2

The diagrams are the same except on the degree six diagonal, where the entries
in the diagram of S/J are larger, so βS/I ≤ βS/L.

There is substantial computational evidence for the LPP Conjecture, but proving
it in its full generality is difficult. It is tempting to borrow from the proofs of Bigatti
and Hulett in the lexicographic case; for example, instead of comparing an arbitrary
ideal I to a lexicographic ideal, they consider the generic initial ideal of I. In
characteristic zero, this gives a strongly stable ideal with graded Betti numbers the
same or larger than those of I, and one has convenient formulas for the graded Betti
numbers of strongly stable ideals. To use this approach with the LPP Conjecture,
however, one needs some way to fix not only the Hilbert function but also the
degrees of the regular sequence. These degrees can change when passing to the
generic initial ideal, which makes this method difficult. Another possibility is to
use work of Charalambous and Evans that describes how to compute the minimal
resolution for LPP ideals [Charalambous-Evans2]. Unfortunately, this method can
be hard to use to compare resolutions of LPP ideals to other ideals, partially because
of some unpredictable ideal quotients that arise.

Our goal in this section is to describe some cases of the LPP Conjecture that
are known. We shall sketch some of the methods used in the proofs of the special
cases. Unfortunately, unlike the EGH Conjecture, the LPP Conjecture is not even
known yet in the monomial case, so there is much room for further work. In the
next section, we shall discuss some reductions and equivalences that may make it
easier to attack the conjecture.

We begin with rings of low dimension. Consider the ring S = k[x1, x2] first.
Let L be an (a1, a2)-LPP ideal in S, and suppose I is an ideal with the same
Hilbert function that contains a regular sequence in degrees a1 and a2. Because
the EGH Conjecture is known for ideals in this ring, it follows that β

S/I
1,j ≤ β

S/L
1,j .
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By Theorem 1.2,
β

S/I
1,j − β

S/I
2,j = β

S/L
1,j − β

S/L
2,j .

Rearranging, we have

β
S/L
2,j − β

S/I
2,j = β

S/L
1,j − β

S/I
1,j ≥ 0,

and thus βS/I ≤ βS/L.
In three variables, the LPP Conjecture is known in the case that I is a monomial

ideal. It follows from the fact that the EGH Conjecture is known for monomial
ideals plus a reformulation of the EGH Conjecture in terms of socle dimensions.
See Section 6, particularly Conjecture 6.1.

In summary, in low dimension, we have the following result.

Theorem 5.3. Let L be an (a1, . . . , an)-LPP ideal, and suppose I is an ideal with
the same Hilbert function that also contains a regular sequence in degrees a1, . . . , an.
If L and I are ideals in S = k[x1, x2], then βS/I ≤ βS/L. If L and I are ideals in
T = k[x1, x2, x3], and I is a monomial ideal, then βT/I ≤ βT/L.

Two other cases of the LPP Conjecture are known. First suppose that L is
a complete intersection, which means that L = (xa1

1 , . . . , xan
n ). Let I be another

(a1, . . . , an)-ideal with the same Hilbert function. Then I is minimally generated
by elements f1, . . . , fn and g1, . . . , gr, where deg fi = ai − di, with di ≥ 0 for each
i, and the fi form a regular sequence. But if any di > 0, then the Hilbert function
of R/I will be too small, so di = 0 for each i. But this means that I = (f1, . . . , fn),
a complete intersection with minimal generators in degrees ai. Therefore βR/I =
βR/L. Hence the LPP Conjecture is trivial for the case in which L is a complete
intersection. We remark, however, that if one considers all ideals with a given
Hilbert function (and not just those ideals with regular sequence in prescribed
degrees), a complete intersection does not necessarily have uniquely minimal graded
Betti numbers. The Hilbert function (1, 3, 5, 6, 6, 5, 3, 1) has incomparable minimal
elements in its partial order, including the resolution of k[a, b, c]/(a2, b3, c5). See
Theorems 3.1 and 3.2 in [Richert1].

The next logical case to consider is that in which the LPP ideal L is an almost
complete intersection. Then L = (xa1

1 , . . . , xan
n ,m) is an (a1, . . . , an)-LPP ideal

with m 6∈ (xa1
1 , . . . , xan

n ). The next result appears in [Francisco2].

Theorem 5.4. Let L be an (a1, . . . , an)-LPP almost complete intersection in R =
k[x1, . . . , xn], and let I ⊂ R be another (a1, . . . , an)-ideal with the same Hilbert
function. Then βR/I ≤ βR/L.

Example 5.5. Let S = k[a, b, c], and let L = (a2, b3, c3, ab2c), a (2, 3, 3)-LPP
ideal. Let I be an ideal generated by generic polynomials of degrees two, three,
three, and four. Then S/L and S/I both have Hilbert function (1, 3, 5, 5, 2). Their
graded Betti diagrams are:

S/L: total: 1 4 6 3 S/I: total: 1 4 5 2
0: 1 . . . 0: 1 . . .
1: . 1 . . 1: . 1 . .
2: . 2 . . 2: . 2 . .
3: . 1 4 1 3: . 1 4 .
4: . . 2 2 4: . . 1 2
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The proof of Theorem 5.4 is somewhat involved, but the idea is relatively sim-
ple, and we sketch it here. See [Francisco2] for more details. We need a way
to compare the minimal graded free resolutions of an (a1, . . . , an)-LPP ideal L in
S = k[x1, . . . , xn] to an ideal I ⊂ S with the same Hilbert function and regular
sequence in degrees a1, . . . , an. Using some counting arguments, one can reduce
to two cases. The easier case is when I is a complete intersection ideal that we
can take to be (xa1

1 , xa2−1
2 , xa3

3 , . . . , xan
n ). The minimal graded free resolution of I

is easy to compute, and it is not hard to see that its graded Betti numbers are
bounded above by those of the corresponding LPP ideal.

The other case one needs to consider is when I is an almost complete intersection
of a certain form. We suppose that L is an (a1, . . . , an)-LPP almost complete
intersection ideal (xa1

1 , . . . , xan
n ,m), where deg m = d. The ideal I to which we

shall compare L is minimally generated by polynomials f1, . . . , fn, g, where the fi

form a regular sequence, deg fi = ai, deg g = d, and (f1, . . . , fn) : (g) is a complete
intersection.

We want to show that βR/I ≤ βR/L. The main difficulty is that it is hard
to compute the minimal graded free resolution of an arbitrary ideal I even with
the restrictions we have placed on I. Our approach is to avoid this problem by
computing nonminimal graded free resolutions of both R/I and R/L. The shifts in
the nonminimal resolutions we compute are identical for both modules, so we need
only show that there is less nonminimality in the resolution of the LPP ideal. We
illustrate the idea in an example, using a monomial ideal for I. For the extension
to nonmonomial ideals, see Section 3 of [Francisco2].

Example 5.6. Let L = (a2, b3, c3, ab2c) ⊂ S = k[a, b, c], the (2, 3, 3)-LPP ideal
from Example 5.5. Let I = (a2, b3, c3, b2c2). Then I contains a regular sequence in
degrees two, two, and three, and I and L have the same Hilbert function.

The nonminimal resolutions we want to construct come from mapping cones.
We start with L. Note that we have the canonical short exact sequence of graded
modules

0 → S/(a, b, c2)(−4) → S/(a2, b3, c3) → S/L → 0.

The minimal graded free resolutions of S/H := S/(a, b, c2) and S/F := S/(a2, b3, c3)
are easy to compute because they are complete intersections. The Comparison
Theorem says that there are maps between the modules in the two resolutions that
make the diagram commutative:

0 −−−−→ S
∂F
3−−−−→ S3 ∂F

2−−−−→ S3 ∂F
1−−−−→ S −−−−→ S/F −−−−→ 0

1

x C2

x C1

x xab2c

xab2c

0 −−−−→ S −−−−→
∂H
3

S3 −−−−→
∂H
2

S3 −−−−→
∂H
1

S −−−−→ S/H −−−−→ 0

Here, the ∂F
i and ∂H

i are the Koszul maps. We have suppressed the gradings to
save room.

We are interested in detecting the nonminimality in the mapping cone resolution
of S/L coming from the above diagram. Since the resolutions of S/F and S/H
are minimal, no nonminimality will arise from the ∂ maps. The only possible
nonminimality will come from having nonzero constants in the vertical maps. The
far left map certainly induces nonminimality because it is just the identity map.
To determine whether there is other nonminimality, we need to find C2 and C1. It
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is not hard to see that C2 should give the relationship between the generators of H
and F , and then it is easy to compute the two maps. They are:

C2 =

c 0 0
0 b2 0
0 0 a

 and C1 =

b2c 0 0
0 ac 0
0 0 ab2

 .

Since there are no nonzero constants in these maps, there is no further nonmini-
mality in the mapping cone resolution of S/L. If one keeps track of the gradings,
one obtains the minimal graded free resolution of S/L shown in Example 5.5.

We note that the matrices Ci have some special properties. C2 is a diagonal
matrix with its nonzero entries the powers of the variables that appear in the
additional generator ab2c of L. Moreover, C1 is just the matrix of 2× 2 minors of
C2, and ab2c is the determinant of C2. This suggests a general strategy for finding
the mapping cone resolution of almost complete intersection monomial ideals like
L and I. We should compute the penultimate vertical map C in the diagram, and
fill in the other vertical maps with the appropriate exterior powers of C.

To compare the resolution of I to that of L, we go through the same process for
I. We have the canonical short exact sequence

0 → S/(a2, b, c)(−4) → S/(a2, b3, c3) → S/I → 0,

and it is easy to find the minimal graded free resolutions of the complete intersection
ideals F = (a2, b3, c3) and G = (a2, b, c). The commutative diagram for I is:

0 −−−−→ S
∂F
3−−−−→ S3 ∂F

2−−−−→ S3 ∂F
1−−−−→ S −−−−→ S/F −−−−→ 0

1

x D2

x D1

x xb2c2

xb2c2

0 −−−−→ S −−−−→
∂H
3

S3 −−−−→
∂H
2

S3 −−−−→
∂H
1

S −−−−→ S/G −−−−→ 0

Again, we have the obvious nonminimality from the identity map on the far left.
The maps D2 and D1 are:

D2 =

c2 0 0
0 b2 0
0 0 1

 and D1 =

b2c2 0 0
0 c2 0
0 0 b2

 .

This time, we have a map with a nonzero constant in it. The 1 in the lower-right
corner of D2 signifies additional nonminimality in the mapping cone resolution of
S/I, and thus the ranks of the free modules in the second and third positions in
the minimal resolution of S/I should be one lower than the ranks in the resolution
of S/L. One can verify this by looking at the Betti diagrams from Macaulay 2:

S/L: total: 1 4 6 3 S/I: total: 1 4 5 2
0: 1 . . . 0: 1 . . .
1: . 1 . . 1: . 1 . .
2: . 2 . . 2: . 2 . .
3: . 1 4 1 3: . 1 4 .
4: . . 2 2 4: . . 1 2
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In more variables, the analysis is a bit more complicated, but the general idea is
the same. Start with an almost complete intersection ideal of the form described
above. Form the canonical short exact sequences as we did in the example, and
write down the resulting commutative diagram. The penultimate vertical map on
the left determines all the vertical maps, so any nonminimality is determined by a
single matrix. From there, it is not hard to show that any nonminimality in the
mapping cone resolution of the LPP ideal occurs in the mapping cone resolution
of the other ideal. For substantial work in another direction on minimal graded
free resolutions of almost complete intersections, see the paper of Migliore and
Miró-Roig [Migliore-Miró-Roig].

Unfortunately, it seems difficult to extend the approach used in the proof of
Theorem 5.4. Having the extra structure of the complete intersections is vital,
making the situation much more complicated if one goes to ideals in n variables
with n + 2 generators. Detecting nonminimality is thus much more difficult for
ideals with more generators.

We conclude the section with a few open questions related to the LPP Conjecture.
Since the conjecture is wide open, this is, of course, just a small sample of the
possibilities.

Question 5.7. Are there simple combinatorial formulas for the graded Betti num-
bers of LPP ideals as there are for lex ideals?

Question 5.8. Is there a way to generalize Theorem 5.4 to almost complete in-
tersection ideals I that do not have the same Hilbert function as an LPP almost
complete intersection?

Question 5.9. Some interesting special cases of the LPP Conjecture: What if
the ai are all equal? Can we say anything interesting when we require I to be a
monomial ideal (or some other special type of ideal)? Suppose L1 is an (a1, . . . , an)-
LPP ideal, and L2 is an (a1 + b1, . . . , an + bn)-LPP ideal with the same Hilbert
function, where all bi ≥ 0. Is βR/L1 ≤ βR/L2?

Remark 5.10. After we wrote the original draft of this paper, Mermin, Peeva, and
Stillman proved the LPP Conjecture for ideals containing the squares of the vari-
ables [Mermin-Peeva-Stillman]. Their approach is to reduce to the case in which I
is a squarefree Borel ideal plus the squares of the variables. As the authors note, it
is not a priori clear that this reduction is possible since taking the generic initial
ideal does not fix the degrees of the maximal length regular sequence in I. Thus
even if I has the squares of the variables among its minimal generators, gin(I) may
not. Even with this reduction, the proof is not at all easy and requires considerable
care. Mermin, Peeva, and Stillman use compression, a method Macaulay devel-
oped, which has been a fruitful approach to questions about Hilbert functions. See
[Mermin] for more information on compression and [Mermin-Peeva] for interesting
approaches to studying the Hilbert functions (and graded Betti numbers) of ideals
that avoid the usual computations with binomials.

6. Equivalences and reductions

There are several other equivalent statements of both EGH and LPP (apart
from the Macaulayesque equivalences of EGH discussed in Section 4), as well as
interesting reductions of EGH to which we now turn our attention.
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The first and most obvious question is whether EGH and LPP might themselves
be equivalent. It is not difficult to show that LPP implies EGH (especially in light
of the generator version of EGH given as Conjecture 4.7). A priori, it seems that
LPP must in fact be quite a bit stronger than EGH, but for n ≤ 3 at least, we
can show that this is not the case. For n = 2, that EGH implies LPP follows
immediately from Theorem 1.2; see the discussion before Theorem 5.3.

The proof that EGH and LPP are equivalent for dimension n = 3 is interesting
because it makes use of another as yet unmentioned form of EGH. In fact, an easy
(and similar to the n = 2 case) application of Theorem 1.2 suffices if one notes that
EGH is equivalent to the following statement.

Conjecture 6.1 (EGH for socles). Suppose that L is lex-plus-powers with respect
to A for some A = (a1, . . . , an), and I is an ideal containing an A-regular sequence
such that H(R/L) = H(R/I). Then βL

n,j ≥ βI
n,j for all j.

We will refer to this conjecture as EGH for socles, because the essence of the
statement is that lex-plus-powers ideals should have largest socles. The proof that
EGH implies EGH for socles can be found in [Richert2] and relies on the fact that the
socle elements in lex-plus-powers ideals are well behaved; that is, if one quotients
by the socle elements of a given degree, one gets another lex-plus-powers ideal.
Given an ideal with a purportedly larger socle, one quotients by socle elements and
uses the fact that lex-plus-powers ideals have more generators (as we are assuming
EGH) to force a contradiction. The proof that EGH for socles implies EGH (found
in [Richert-Sabourin]) follows from a mapping cone argument after demonstrating
that, if x is the A-regular sequence in an A-lex-plus-powers ideal L, then (x : L) is
again lex-plus-powers.

In the language of Betti diagrams, proving that EGH implies LPP requires show-
ing that if the first column of the Betti diagrams of lex-plus-powers ideals are
biggest, then so are all the columns. The equivalence of EGH and EGH for socles
says that if lex-plus-powers ideals always have largest first columns, then they also
have largest last columns, and vice-versa.

We can also make similar statements about the rows of Betti diagrams. It turns
out that the Lex-plus-powers Conjecture is equivalent to the following statement,
which we refer to as the Lex-plus-powers Conjecture for last rows.

Conjecture 6.2. Suppose that H is a Hilbert function, I is an ideal containing
an A-regular sequence and attaining H, ρH is the regularity of H, and L is the
A-lex-plus-powers ideal attaining H. Then β

LH,A
i,ρH+i ≥ βI

i,ρH+i for i = 1, . . . , n.

In terms of the Betti diagrams, this conjecture is easier to describe. If I contains
an A-regular sequence and L is A-lex-plus-powers such that H(R/I) = H(R/L),
then the entries in the last row of the Betti diagram of L are conjectured to be
componentwise larger than those in the last row of the Betti diagram of I. That
this is equivalent to LPP is quite surprising, but the proof is not difficult. Simply
note that adding the (ρH − 1)-st power of the maximal ideal to each of I and L
perturbs only the last two rows of their Betti diagrams, whence induction and the
usual application of Theorem 1.2 finish the proof.

In fact, one can show (using the same argument), that the first t columns of the
Betti diagrams of lex-plus-powers ideals are always larger if and only if the first t
entries in their last rows are always larger. This proves, in particular, that EGH is
equivalent to the following.
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Conjecture 6.3. Suppose that I contains an A-regular sequence, L is A-lex-plus-
powers, H(R/I) = H(R/L), and ρ is the regularity of H(R/I). Then βL

1,ρ ≥ βI
1,ρ.

In essence, this says that EGH is equivalent to lex-plus-powers ideals always
having the largest number of minimal generators in the last possible degree (the
last degree for which generators might occur is the first degree for which the Hilbert
function is zero). In light of EGH for socles, we may give another equivalent
statement of EGH.

Conjecture 6.4. Suppose that I contains an A-regular sequence, L is A-lex-plus-
powers, H(R/I) = H(R/L), and ρ is the regularity of H(R/I). Then βL

n,ρ+n−1 ≥
βI

n,ρ+n−1.

That is, EGH is equivalent to lex-plus-powers ideals always having the largest
number of socle elements in the last degree for which the Hilbert function is zero
minus one (of course, in the final degree, the number of socle elements is simply
the value of the Hilbert function in that degree, and hence is always equal in any
comparison we might be making).

There is other motivation for the Eisenbud-Green-Harris Conjecture aside from
its beauty in relation to Macaulay’s theorem. In fact, it turns out that being lex-
plus-powers is a fairly strong condition. By this we mean that, if any counterex-
ample exists, then we can force the existence of other (seemingly) very unlikely
counterexamples using inferences not difficult to make from the nature of LPP
ideals. Recall, for instance, that an ideal is said to be level if it only contains socle
elements in one degree (so an ideal I with Hilbert function H(R/I) = H is level if
βI

n,j = 0 for j < ρH + n and βI
n,ρH+n 6= 0). It turns out that if EGH is true for lex-

plus-powers ideals (that is, if the A-lex-plus-powers ideal attaining Hilbert function
H has more generators in each degree than any lex-plus-powers ideal containing
an A-regular sequence and attaining H) but false in general, then there exist level
counterexamples (at least, in characteristic zero).

Theorem 6.5. Suppose that EGH is false in the characteristic zero case in some
ring R = k[x1, . . . , xn] but holds for lex-plus-powers ideals. Then there is an ideal
I ⊂ R =, containing an A-regular sequence, and an A-lex-plus-powers ideal L with
H = H(R/I) = H(R/L), such that

(1) βL
1,j ≥ βI

1,j for j ≤ ρH where ρH is the regularity of H(R/I)
(2) βL

1,ρH+1 < βI
1,ρH+1

(3) I is level

Sketch of proof. If EGH fails, we may suppose that I is a minimal length coun-
terexample containing an A-regular sequence. That is, I is an ideal containing
an A-regular sequence, L is A-lex-plus-powers such that H(R/I) = H(R/L), and
βL

1,j < βI
1,j for some j. Writing ρH to be the regularity of H = H(R/I), it must be

that βL
1,j ≥ βI

1,j for j ≤ ρH and βL
1,ρH+1 < βI

1,ρH+1. If this were not the case then let
t to be the smallest integer such that βI

1,t > βL
1,t, and consider I ′ = I +(x1, . . . , xn)t

and L′ = L + (x1, . . . , xn)t respectively. For a new sequence of degrees (which we
call A′), it is now the case that I ′ contains an A′-regular sequence, L′ is lex-plus-
powers with respect to A′, H(R/I ′) = H(R/L′), and βI′

1,t > βL′

1,t, but the length of
I ′ is strictly less than that of I, a contradiction.

To show that I is level we first suppose that in some degree d < ρH + 1 the
dimension of the socles of both R/I and R/L are nonzero. Let sI ∈ Rd be a
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preimage of a socle elements from R/I and let sL be the largest (in lex order)
monomial preimage of a dimension d socle element of R/L. Let I ′ = I + (sI)
and L′ = L + (sd). Then it can be shown that L′ is lex-plus-powers with respect
to A′ ≤ A, and that I ′ contains an A′ regular sequence (and this is where the
characteristic zero hypothesis is used). Obviously H(R/I ′) = H(R/L′), but this
gives a contradiction, because adding socle elements of degree d < ρH has no
effect on the number of degree ρH + 1 generators. That is, I ′ is a smaller length
counterexample.

So it is enough to show that dim soc(R/L)d ≥ dim soc(R/I)d for all d (because
then if R/I has socle element in any degree except the last, so does R/L, and we
can quotient by them as in the previous paragraph, obtaining a smaller counterex-
ample). Suppose not. Then for some d ≤ ρH, dim soc(R/L)d < dim soc(R/I)d.
Let SL be the socle of S/L in degree d, let SI be dim(SL) elements of the socle of
R/I in degree d, let sI be a degree d socle element of S/(I + SI) and sL be the
largest element of Sd − (L + SL)d. Finally, let I ′ = I + SI + (sI) + (x1, . . . , xn)d+1

and L′ = L + SL + (sL) + (x1, . . . , xn)d+1. One can demonstrate that if L′ con-
tains an A′-regular sequence, then I ′ does as well. Furthermore, it is apparent that
H(R/I ′) = H(R/L′), and one can show (see [Richert2], Lemma 4.3 for the proof)
that L + SL can have no minimal generators (except pure power generators) in de-
gree d+1 (this because it has no socle elements in degree d). Note that H(S/(IS +
I +(sI)), d+1) > H(S/(L+SL +(sL)), d+1) because sL is not a socle element. It
can be shown (and this is where the hypothesis that EGH holds for lex-plus-powers
ideals is used) that H(S/(IS + I + (sI)), d + 1)−H(S/(L + SL + (sL)), d + 1) plus
the number of regular minimal generators of (I + SI + (sI))d+1 is strictly larger
than the number of pure power minimal generators of (L + DL + (sL))d+1 (this
argument is somewhat involved). It follows that βI′

1,d+1 > βL′

1,d+1, a contradiction
as I ′ is then a counterexample of shorter length. �

Given work characterizing level algebras in codimension three (see for instance
[Geramita-Harima-Migliore-Shin]) there is hope that progress might be made by
considering potential counterexamples of this form.

We end with another striking special counterexample which must exist if EGH
fails.

Theorem 6.6. Suppose that EGH is false in some ring R = k[x1, . . . , xn]. Then
there is an ideal I ⊂ R containing an A-regular sequence {f1, . . . , fn} and an A-
lex-plus-powers ideal L with H = H(R/I) = H(R/L) such that

(1) βI
n,ρH+n−1 > βL

n,ρH+n−1 (where ρH is the regularity of H(R/I)),
(2) I≤ρH−1 = (f1, . . . , fn)≤ρH−1,
(3) L≤ρH−1 = (xa1

1 , . . . , xan
n )≤ρH−1.

Sketch of proof. If EGH is false for some n, then there is an I containing an A-
regular sequence and an A-lex-plus-powers ideal L such that H(R/I) = H(R/L)
and βL

1,ρH+1 < βI
1,ρH+1. Let y denote an A-regular sequence in I and x de-

note the minimal monomial regular sequence in L. Then L′ = (x : L) is A′-
lex plus powers for some A′ ≤ A and I ′ = (y : I) contains an A′-regular se-
quence (see [Richert-Sabourin], section x for a proof of this). Let I ′′ = I ′ +
(x1, . . . , xn)(

Pn
i=1 a′i)−(ρH+1)+1 and L′′ = L′ + (x1, . . . , xn)(

Pn
i=1 a′i)−(ρH+1)+1. If

we write A′′ to be the degrees of the minimal monomial sequence in L′′, then it is
easy to see that L′′ is lex-plus-powers with respect to A′′, I contains an A′′-regular



LEX-PLUS-POWERS IDEALS 23

sequence, and H(R/L′′) = H(R/I ′′). Furthermore, by considering closely the map-
ping cone, one can conclude that L′′ and I ′′ satisfy conditions (1) - (3) as required.
This completes the sketch. �
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Astérisque (1993), no. 218, 187–202. Journées de Géométrie Algébrique d’Orsay (Orsay,
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