LECTURE 21

Green’s Identities

Let us recall Stokes’ Theorem in \(n\)-dimensions.

Theorem 21.1. Let \(\mathbf{F} : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a vector field over \(\mathbb{R}^n \) that is of class \(C^1 \) on some closed, connected, simply connected \(n \)-dimensional region \(D \subseteq \mathbb{R}^n \). Then

\[
\int_D \nabla \cdot \mathbf{F} \, dV = \int_{\partial D} \mathbf{F} \cdot \mathbf{n} \, dS
\]

where \(\partial D \) is the boundary of \(D \) and \(\mathbf{n}(\mathbf{r}) \) is the unit vector that is (outward) normal to the surface \(\partial D \) at the point \(\mathbf{r} \in \partial D \).

As a special case of Stokes’ theorem, we may set

\[
\mathbf{F} = \nabla \phi
\]

with \(\phi \) a \(C^2 \) function on \(D \). We then obtain

\[
\int_D \nabla^2 \phi \, dV = \int_{\partial D} \nabla \phi \cdot \mathbf{n} \, dS .
\]

Recall that the identity (21.2) was essential to the proof that any extrema of a solution \(\phi \) of 2-dimensional Laplace’s equation

\[
\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0
\]

must occur on the boundary of region. The analogous proposition about extrema for solutions of Laplace’s equation in \(n \)-dimensions is also true and again it is relatively easy consequence of (21.2).

Another special case of Stokes’ theorem comes from the choice

\[
\mathbf{F} = \phi \nabla \psi .
\]

For this case, Stokes’ theorem says

\[
\int_D \nabla \cdot (\phi \nabla \psi) \, dV = \int_{\partial D} \phi \nabla \psi \cdot \mathbf{n} \, dS .
\]

Using the identity

\[
\nabla \cdot (\phi \mathbf{F}) = \nabla \phi \cdot \mathbf{F} + \phi \nabla \cdot \mathbf{F}
\]

we find (21.4) is equivalent to

\[
\int_D \nabla \phi \cdot \nabla \psi \, dV + \int_D \phi \nabla^2 \psi \, dV = \int_{\partial D} \phi \nabla \psi \cdot \mathbf{n} \, dS .
\]

Equation (21.6) is known as Green’s first identity.

Reversing the roles of \(\phi \) and \(\psi \) in (21.6) we obtain

\[
\int_D \nabla \psi \cdot \nabla \phi \, dV + \int_D \psi \nabla^2 \phi \, dV = \int_{\partial D} \psi \nabla \phi \cdot \mathbf{n} \, dS .
\]
Finally, subtracting (21.7) from (21.6) we get

\begin{equation}
\int_D (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \, dV = \int_{\partial D} (\phi \nabla \psi - \psi \nabla \phi) \cdot \mathbf{n} \, dS.
\end{equation}

Equation (21.8) is known as **Green’s second identity**.

Now set

\[\psi(\mathbf{r}) = \frac{1}{|\mathbf{r} - \mathbf{r}_0| + \epsilon} \]

and insert this expression into (21.8). We then get

\[\int_D \phi \left(\nabla^2 \frac{1}{|\mathbf{r} - \mathbf{r}_0| + \epsilon} \right) \, dV = \int_D \frac{1}{|\mathbf{r} - \mathbf{r}_0| + \epsilon} \nabla^2 \phi \, dV \\
+ \int_{\partial D} \left(\frac{1}{|\mathbf{r} - \mathbf{r}_0| + \epsilon} \nabla \phi - \phi \left(\nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0| + \epsilon} \right) \cdot \mathbf{n} \, dS \right). \]

Taking the limit \(\epsilon \to 0 \) and using the identities

\[\lim_{\epsilon \to 0} \nabla^2 \frac{1}{|\mathbf{r} - \mathbf{r}_0| + \epsilon} = -4\pi \delta^{(n)}(\mathbf{r} - \mathbf{r}_0) \]
\[\lim_{\epsilon \to 0} \frac{1}{|\mathbf{r} - \mathbf{r}_0| + \epsilon} = \frac{1}{|\mathbf{r} - \mathbf{r}_0|} \]
\[\lim_{\epsilon \to 0} \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0| + \epsilon} = \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0|} \]

we obtain

\begin{equation}
-4\pi \phi(\mathbf{r}_0) = \int_D \frac{1}{|\mathbf{r} - \mathbf{r}_0|} \nabla^2 \phi \, dV \\
+ \int_{\partial D} \left(\frac{1}{|\mathbf{r} - \mathbf{r}_0|} \nabla \phi - \phi \left(\nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0|} \right) \cdot \mathbf{n} \, dS \right).
\end{equation}

Equation (21.9) is known as **Green’s third identity**.

Notice that if \(\phi \) satisfies Laplace’s equation the first term on the right hand side vanishes and so we have

\begin{equation}
\phi(\mathbf{r}_0) = \frac{1}{4\pi} \int_{\partial D} \left(\frac{1}{|\mathbf{r} - \mathbf{r}_0|} \nabla \phi - \phi \left(\nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0|} \right) \cdot \mathbf{n} \, dS \right)
= \frac{1}{4\pi} \int_{\partial D} \left(\phi \frac{\nabla}{\nabla|\mathbf{r} - \mathbf{r}_0|} - \frac{1}{|\mathbf{r} - \mathbf{r}_0|^2} \frac{\partial \phi}{\partial n} \right) \, dS.
\end{equation}

Here \(\frac{\partial}{\partial n} \) is the directional derivative corresponding to the surface normal vector \(\mathbf{n} \). Thus, if \(\phi \) satisfies Laplace’s equation in \(D \) then its value at any point \(\mathbf{r}_0 \in D \) is completely determined by the values of \(\phi \) and \(\frac{\partial}{\partial n} \) on the boundary of \(D \).
1. Green’s Functions and Solutions of Laplace’s Equation, II

Recall the fundamental solutions of Laplace’s equation in n-dimensions

$$\Phi_n(r, \psi, \theta_1, \ldots, \theta_{n-2}) = \begin{cases} \log |r|, & \text{if } n = 2 \\ \frac{c_n}{r^{n-1}}, & \text{if } n > 2 \end{cases}$$

Each of these solutions really only makes sense in the region $\mathbb{R}^n - \{0\}$; for each possesses a singularity at the origin.

We studied the case when $n = 3$, a little more closely and found that we could actually write

$$\nabla^2 \left(\frac{1}{r} \right) = -4\pi \delta^3(r) = \begin{cases} 0, & \text{if } r \neq 0 \\ \infty, & \text{if } r = 0 \end{cases}$$

In fact, using similar arguments one can show that

$$\nabla^2 \Phi(r) = -c_n \delta^n(r)$$

where c_n is the surface area of the unit sphere in \mathbb{R}^n. Thus, the fundamental solutions can actually be regarded as solutions of an inhomogeneous Laplace equation where the driving function is concentrated at a single point.

Let us now set $n = 3$ and consider the following PDE/BVP

$$\begin{align*}
\nabla^2 \Phi(r) &= f(r), \quad r \in D \\
\Phi(r)|_{\partial D} &= h(r)|_{\partial D}
\end{align*}$$

where D is some closed, connected, simply connected region in \mathbb{R}^3. Let r_s be some fixed point in D and set

$$G(r, r_s) = \frac{-1}{4\pi |r - r_s|} + \phi_s(r, r_s)$$

where $\phi_s(r, r_s)$ is some solution of the homogeneous Laplace equation

$$\nabla^2 \phi_s(r, r_s) = 0.$$

Then

$$\nabla^2 G(r, r_s) = \delta^3(r - r_s).$$

Now recall Green’s third identity

$$\int_D \left(\Phi \nabla^2 \Psi - \Psi \nabla^2 \Phi \right) dV = \int_{\partial D} \left(\Phi \nabla \Psi - \Psi \nabla \Phi \right) \cdot \mathbf{n} dS.$$

If we replace ψ in (21.18) by $G(r, r_s)$ we get

$$\begin{align*}
\Phi(r_s) &= \int_D \Phi(r) \delta^3(r - r_s) dV \\
&= \int_D \Phi \nabla^2 G dV \\
&= \int_D \nabla^2 \Phi dV + \int_{\partial D} \left(\Phi \nabla G - G \nabla \Phi \right) \cdot \mathbf{n} dS \\
&= \int_D \nabla f dV + \int_{\partial D} h \frac{\partial G}{\partial n} - G \frac{\partial h}{\partial n} dS \\
&= \int_D \nabla f dV + \int_{\partial D} h \frac{\partial G}{\partial n} dS - \int_{\partial D} G \frac{\partial h}{\partial n} dS.
\end{align*}$$

Up to this point we have only required that the function ϕ_s satisfies Laplace’s equation. We will now make our choice of ϕ_s more particular; we shall choose $\phi_s(r, r_s)$ to be the unique solution of Laplace’s equation in D satisfying the boundary condition

$$\frac{1}{4\pi |r - r_s|}|_{\partial D} = \phi_s(r, r_s)|_{\partial D}$$

so that

$$G(r, r_s)|_{\partial D} = 0.$$
Then the last integral on the right hand side of (21.19) vanishes and so we have

\[(21.21) \quad \Phi (r, \mathbf{r}_0) = \int_D G(r, \mathbf{r}_0) f(\mathbf{r}) \, dV + \int_{\partial D} h(\mathbf{r}) \frac{\partial G}{\partial n} (r, \mathbf{r}_0) \, dS.\]

Thus, once we find a solution \(\phi_\circ (r, \mathbf{r}_0)\) to the homogeneous Laplace equation satisfying the boundary condition (21.20), we have a closed formula for the solution of the PDE/BVP (21.14) in terms of integrals of \(G(r, \mathbf{r}_0)\) times the driving function \(f(\mathbf{r})\), and of \(\frac{\partial G}{\partial n} (r, \mathbf{r}_0)\) times the function \(h(r)\) describing the boundary conditions on \(\Phi\). Note that the Green’s function \(G(r, \mathbf{r}_0)\) is fixed once we fix \(\phi_\circ\) which in turn depends only on the nature of the boundary of the region \(D\) (through condition (21.20)).

Example

Let us find the Green’s function corresponding to the interior of sphere of radius \(R\) centered about the origin. We seek to find a solution of \(\phi_\circ\) of the homogenous Laplace’s equation such that (21.20) is satisfied. This is accomplished by the following trick.

Suppose \(\Phi (r, \psi, \theta)\) is a solution of the homogeneous Laplace equation inside the sphere of radius \(R\) centered at the origin. For \(r > R\), we define a function

\[(21.22) \quad \hat{\Phi} (r, \psi, \theta) = \frac{R}{r} \Phi \left(\frac{R^2}{r}, \psi, \theta \right).\]

I claim that \(\hat{\Phi} (r, \psi, \theta)\) so defined also satisfies Laplace’s equation in the region exterior to the sphere.

To prove this, it suffices to show that

\[(21.23) \quad 0 = r^2 \nabla \hat{\Phi} = \frac{\partial}{\partial r} \left(r^2 \frac{\partial \hat{\Phi}}{\partial r} \right) + \frac{1}{\sin \psi} \frac{\partial}{\partial \psi} \left(\sin \psi \frac{\partial \hat{\Phi}}{\partial \psi} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \hat{\Phi}}{\partial \theta^2} \]

or

\[(21.24) \quad \frac{\partial}{\partial r} \left(r^2 \frac{\partial \hat{\Phi}}{\partial r} \right) = - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \hat{\Phi}}{\partial \theta} \right) - \frac{1}{\sin^2 \theta} \frac{\partial^2 \hat{\Phi}}{\partial \psi^2} \]

Set

\[(21.25) \quad u = \frac{R^2}{r} \]

so that

\[(21.26) \quad \hat{\Phi} (r, \psi, \theta) = \frac{R}{u} \Phi \left(u, \psi, \theta \right)
\quad \frac{\partial}{\partial r} = - \frac{\partial u}{\partial r} \frac{\partial}{\partial u} = - \frac{R^2}{r^2} \frac{\partial}{\partial u} = - \frac{u^2}{R^2} \frac{\partial}{\partial u} \]

and so

\[(21.27) \quad \frac{\partial}{\partial r} \left(r^2 \frac{\partial \hat{\Phi}}{\partial r} \right) = \left(\frac{u^2}{R^2} \frac{\partial}{\partial u} \right) \left(\frac{R}{u} \Phi \right) - \frac{u^2}{R^2} \frac{\partial}{\partial u} \left(\frac{R}{u} \frac{\partial \Phi}{\partial u} \right) \]

\[= \frac{u^2}{R^2} \frac{\partial}{\partial u} \left(u \Phi \right) \]

\[= \frac{u}{R} \left(u \frac{\partial \Phi}{\partial u} + 2 \frac{\partial u \Phi}{\partial u} \right) \]

\[= \frac{u}{R} \left(\frac{\partial}{\partial u} \left(u \frac{\partial \Phi}{\partial u} \right) \right) \]

\[= - \frac{u}{R} \left(\frac{\partial}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \Phi}{\partial \psi^2} \]

Notice that

\[(21.28) \quad \lim_{r \to R} \hat{\Phi} (r, \psi, \theta) = \Phi (r, \psi, \theta) \]

This transform is called *Kelvin inversion*.
Now let return to the problem of finding a Green’s function for the interior of a sphere of radius. Let
\begin{equation}
\hat{r} = r \left(\frac{R^2}{r}, \psi, \theta \right) = \frac{R^2}{r^2} r.
\end{equation}
In view of the preceding remarks, we know that the functions
\begin{align}
\Phi_1 (r) &= \frac{1}{|r - r_s|} \\
\Phi_2 (r) &= \frac{1}{r^2 |r - r_s|} = \hat{\Phi}_1 (r)
\end{align}
will satisfy, respectively,
\begin{align}
\nabla^2 \Phi_1 (r) &= -4\pi \delta^3 (r - r_s) \\
\nabla^2 \Phi_2 (r) &= -\frac{4\pi \delta^3}{r} \left(\frac{R^2}{r^2} - r_s \right).
\end{align}
However, notice that the support of $\nabla^2 \Phi_2 (r)$ lies completely outside the sphere. Therefore, in the interior of the sphere, Φ_3 is a solution of the homogenous Laplace equation. We also know that on the boundary of the sphere that we have
\begin{equation}
\Phi_1 (r) = \Phi_2 (r) = 0.
\end{equation}
Thus, the function
\begin{equation}
G (r, r_s) = \frac{R^2}{r^2 |r - r_s|} - \frac{1}{4\pi |r - r_s|}
\end{equation}
thus satisfies
\begin{equation}
\nabla^2 G (r, r_s) = \delta^3 (r - r_s)
\end{equation}
for all r inside the sphere and
\begin{equation}
G (r, r_s) = 0
\end{equation}
or all r on the boundary of the sphere. Thus, the function $G (r, r_s)$ defined by (21.33) is the Green’s function for Laplace’s equation within the sphere.

Now consider the following PDE/BVP
\begin{align}
\nabla^2 \Phi (r) &= f (r), \quad r \in B \\
\Phi (R, \psi, \theta) &= 0
\end{align}
where B is a ball of radius R centered about the origin. According to the formula (21.21) and (21.33), the solution of (21.36) is given by
\begin{align}
\Phi (r_s) &= \int_B G (r, r_s) f (r) \, dV + \int_{\partial B} h (\psi, \theta) \frac{\partial G}{\partial n} (r, r_s) \, dS \\
&= \int_B G (r, r_s) f (r) \, dV
\end{align}
To arrive at a more explicit expression, we set
\begin{align}
r_s &= (r \cos (\psi) \sin (\theta), r \sin (\psi) \sin (\theta), r \cos (\theta)) \\
r &= (\rho \cos (\alpha) \sin (\beta), \rho \sin (\alpha) \sin (\beta), \rho \cos (\beta))
\end{align}
Then
\begin{align}
dV &= \rho^2 \sin^2 (\theta) \, d\rho \, d\alpha \, d\beta \\
ds &= \rho^2 \sin^2 (\theta) \, d\rho \, d\beta
\end{align}
and after a little trigonometry one finds
\begin{align}
\frac{1}{4\pi |r - r_s|} &= \frac{1}{4\pi \sqrt{r^2 + \rho^2 - 2r \rho (\cos (\psi - \alpha) \sin (\beta) + \cos (\theta) \cos (\beta))}} \\
\frac{1}{4\pi |\frac{2}{r} r_s - \frac{2}{r} r_s|} &= \frac{R}{4\pi \sqrt{R^4 + r^2 \rho^2 - 2R^2 \rho (\cos (\psi - \alpha) \sin (\beta) + \cos (\theta) \cos (\beta))}}.
\end{align}
Thus,

\[\Phi(r, \psi, \theta) = \int_0^R \int_0^{2\pi} \int_0^\pi \frac{R f(r, \psi, \theta) r^2 \sin(\theta) d\theta d\psi}{4\pi \sqrt{R^4 + r^2 \rho^2 - 2R^2 r \rho (\cos(\psi - \alpha) \sin(\theta) \sin(\beta) + \cos(\theta) \cos(\beta))}} - \int_0^R \int_0^{2\pi} \int_0^\pi \frac{f(r, \psi, \theta) r^2 \sin(\theta) d\theta d\psi}{4\pi \sqrt{r^2 + \rho^2 - 2r \rho (\cos(\psi - \alpha) \sin(\theta) \sin(\beta) + \cos(\theta) \cos(\beta))}} \]

Homework: 9.3.1, 9.3.9