LECTURE 20

Green’s Functions and Solutions of Laplace’s Equation, I

In our discussion of Laplace’s equation in three dimensions

\[
0 = \nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2}
\]

I pointed out one solution of special importance, the so-called fundamental solution

\[
\Phi(x, y, z) = \frac{1}{r} = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.
\]

Note that due to the singularity at the point \((0,0,0)\), the solution \((20.2)\) is really only a solution for the region \(\mathbb{R}^3 - (0,0,0)\). The nature of this solution when \(r \to 0\) is worth examining a little closer.

In terms of spherical coordinates

\[
\begin{align*}
\rho &= \sqrt{x^2 + y^2 + z^2} \\
\psi &= \tan^{-1} \left(\frac{y}{x} \right) \\
\theta &= \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)
\end{align*}
\]

we have

\[
\begin{align*}
\Phi(\rho, \psi, \theta) &= \frac{1}{\rho} \\
\nabla &= \rho \frac{\partial}{\partial \rho} + \hat{\theta} \frac{\partial}{\partial \theta} + \hat{\psi} \frac{1}{\sin(\theta)} \frac{\partial}{\partial \psi} \\
\nabla^2 &= \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial}{\partial \rho} \right) + \frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \psi^2}
\end{align*}
\]

where \(\hat{r}, \hat{\theta}, \hat{\psi}\) are respectively, the unit vectors indicating the directions of tangent vectors to the corresponding coordinate curves.

Applying the gradient \(\nabla\) and the Laplacian \(\nabla^2\) to our solution \((20.2)\) we get

\[
\begin{align*}
\nabla \Phi &= \rho \frac{\partial}{\partial \rho} \left(\frac{1}{\rho} \right) = \frac{\Phi}{\rho^2} \\
\nabla^2 \Phi &= \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial}{\partial \rho} \frac{1}{\rho} \right) = 0.
\end{align*}
\]

However, we should note again that these formula are not really valid when \(r = 0\) (since \(\Phi\) is not continuous when \(r = 0\), we certainly cannot evaluate derivatives of \(\Phi\) when \(r = 0\)). To study the situation near \(r = 0\), let \(\epsilon > 0\) be a small positive parameter and define

\[
\Phi_\epsilon = \frac{1}{r + \epsilon}.
\]

Since \(r\) is never negative, \(\Phi_\epsilon\) is perfectly regular throughout \(\mathbb{R}^3\), and obviously

\[
\Phi = \lim_{\epsilon \to 0} \Phi_\epsilon.
\]
Applying the Laplacian to Φ, yields

$$\nabla^2 \Phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(\frac{-2r(r+\epsilon)^2 + 2r^2(r+\epsilon)}{(r+\epsilon)^2} \right) = \frac{1}{r^2} \frac{-2r}{r(r+\epsilon)} .$$

(20.8)

Now let us now consider the volume integral of $\nabla^2 \Phi$ over \mathbb{R}^3. We have

$$\int_{\mathbb{R}^3} \nabla^2 \Phi \, dV = \lim_{R \to \infty} \int_0^R \int_0^{2\pi} \int_0^\pi \frac{2r^2}{r(r+\epsilon)} r^2 \sin(\theta) \, dr \, d\theta \, d\phi$$

$$= \lim_{R \to \infty} \left[\int_0^R \frac{8\pi r^2}{r+\epsilon} \, dr \right]_0^R$$

$$= \lim_{R \to \infty} \left[\frac{8\pi r^2}{r+\epsilon} - \frac{4\pi r^3}{r^2} \right]_R^R$$

$$= -4\pi .$$

(20.9)

Notice the result we obtain is independent of ϵ.

Thus, we have discovered a sequence of functions f_ϵ

$$(20.10) \quad f_\epsilon(r) = \frac{1}{4\pi} \nabla^2 \Phi_\epsilon(r) = \frac{\epsilon}{2\pi r(r+\epsilon)^3}$$

for which

$$(20.11) \quad \lim_{\epsilon \to 0} f_\epsilon(r) = \begin{cases} 0, & \text{if } r \neq (0, 0, 0) \\ \infty, & \text{if } r = (0, 0, 0) \end{cases}$$

and for which

$$(20.12) \quad \int_{\mathbb{R}^3} f_\epsilon(r) \, dV = 1 \quad \forall \epsilon \neq 0$$

But properties (20.11) and (20.12) are exactly the properties that we demand for a sequence of functions to define a three-dimensional delta-function. (See Lecture 7.)

Indeed, let $g\,(r)$ be a differentiable function on \mathbb{R}^3 and consider the limit

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^3} g\,(r) f_\epsilon(r) \, dV .$$

According to (20.11) the support of $f_\epsilon(r)$ for small ϵ is concentrated around the origin. For example, if we set

$$\epsilon = 10^{-6} f_\epsilon(r) < \frac{10^{-6}}{2\pi}, \quad \forall \, r > 1$$

and if we set $\epsilon = 10^{-30}$

$$f_\epsilon(r) < \frac{10^{-6}}{2\pi}, \quad \forall \, r > 10^{-6} .$$

In the limit the support of $f_\epsilon(r)$ the integrand is precisely the origin O. Thus,

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^3} g\,(r) f_\epsilon(r) \, dV = \lim_{\epsilon \to 0} \int_{\mathbb{R}^3} g(O) f_\epsilon(r) \, dr = g(O) .$$

And so we set

$$(20.13) \quad \delta^3(r) = \lim_{\epsilon \to 0} \left(-\frac{1}{4\pi} \nabla^2 \left(\frac{1}{r + \epsilon} \right) \right)$$
with the understanding that the limit is to be taken only after integrating. By an abuse of notation one sometimes writes
\begin{equation}
\nabla^2 \left(\frac{1}{r} \right) = -4\pi \delta^3(r)
\end{equation}
or even more generally,
\begin{equation}
\nabla^2 \frac{1}{|r-r_o|} = -4\pi \delta^3 (r-r_o) .
\end{equation}

Okay, so what is the point of all this? Consider the non-homogeneous equation
\begin{equation}
\nabla^2 \Phi = -4\pi g(r)
\end{equation}
with \(g(r) \) decaying faster than \(\frac{1}{r^{d-\tau}} \) as \(r \to \infty \). Multiplying both sides of (20.16) by
\[
\frac{1}{|r-r_o|}
\]
and integrating over \(\mathbb{R}^3 \) we get
\[
\int_{\mathbb{R}^3} \frac{-4\pi}{|r-r_o|} g(r) dV = \int_{\mathbb{R}^3} \frac{1}{|r-r_o|} \nabla^2 \Phi(r) dV
\]
\[
= - \int_{\mathbb{R}^3} \nabla \left(\frac{1}{|r-r_o|} \right) \cdot \nabla \Phi(r) dV
\]
\[
= \int_{\mathbb{R}^3} \nabla^2 \left(\frac{1}{|r-r_o|} \right) \Phi(r) dV
\]
\[
= \int_{\mathbb{R}^3} -4\pi \delta^3 (r-r_o) \Phi(r) dV
\]
\[
= -4\pi \Phi(r_o) .
\]
(In the second and third steps we have used an integration by parts formula coming from Gauss’s theorem). We thus have the following solution to (20.16)
\[
\Phi(r) = \int_{\mathbb{R}^3} \frac{g(r')}{|r'-r|} dV .
\]

Note how the integral kernel \(G(r,r') = \frac{1}{|r-r'|} \) is used to construct the solution \(\Phi(r) \) directly from the “source function” \(g(r) \). More generally, an integral kernel that interpolates between source functions (inhomogeneous terms) and solutions of a nonhomogeneous PDE is referred to as Green’s function for the PDE.