Floating Point Error Analysis

We now state two theorems regarding the propagation of round off errors for sums and products.

0.1. Round-off errors induced by machine addition.

THEOREM 4.1. Let $x_{0}, x_{1}, \ldots, x_{n}$ be positive machine numbers in a computer whose unit roundoff error is ε. Then the relative roundoff error of the sum

$$
\sum_{k=0}^{n} x_{k}
$$

is at most $(1+\varepsilon)^{n}-1 \approx n \varepsilon$.

Proof. Suppose we try to compute a sum $x_{0}+x_{1}+\cdots+x_{n}$ of machine numbers. This would be carried out iteratively by first computing $x_{0}+x_{1}$, rounding off to $f l\left(x_{0}+x_{1}\right)$ and then computing $f l\left(x_{0}+x_{1}\right)+x_{2}$ and rounding off to $f l\left(f l\left(x_{0}+x_{1}\right)+x_{2}\right)$, etc. To see how the round off errors propagate let

$$
S_{k}=x_{0}+x_{1}+\cdots+x_{k}
$$

be the exact $k^{t h}$ partial sum and let

$$
S_{k}^{*}=f l\left(S_{k}^{*}+x_{k}\right)
$$

be the machine-computed $k^{t h}$ partial sum. Define

$$
\begin{aligned}
\rho_{k} & =\frac{S_{k}^{*}-S_{k}}{S_{k}} \\
\delta_{k} & =\frac{S_{k+1}^{*}-\left(S_{k}^{*}+x_{k+1}\right)}{S_{k}^{*}+x_{k+1}}
\end{aligned}
$$

ρ_{k} is just the relative error at the $k^{t h}$ stage of the calculation, while δ_{k} is the round-off error incurred at the next step. Our hypothesis is that $\left|\delta_{k}\right|$ is always $\leq \varepsilon$. Using

$$
\begin{aligned}
S_{k+\mathbf{1}}^{*} & =\left(S_{k}^{*}+x_{k+\mathbf{1}}\right) \delta_{k}+S_{k}^{*}+x_{k+1}=\left(S_{k}^{*}+x_{k+1}\right)\left(1+\delta_{k}\right) \\
S_{k}^{*} & =S_{k} \rho_{k}+S_{k} \\
S_{k+\mathbf{1}} & =S_{k}+x_{k+1}
\end{aligned}
$$

we have

$$
\begin{aligned}
\rho_{k+1} & =\frac{S_{k+\mathbf{1}}^{*}-S_{k+1}}{S_{k+1}} \\
& =\frac{\left(S_{k}^{*}+x_{k+1}\right)\left(1+\delta_{k}\right)-\left(S_{k}+x_{k+1}\right)}{S_{k+1}} \\
& =\frac{\left(S_{k} \rho_{k}+S_{k}+x_{k+1}\right)\left(1+\delta_{k}\right)-\left(S_{k}+x_{k+1}\right)}{S_{k+1}} \\
& =\frac{\left(S_{k}\left(1+\rho_{k}\right)+x_{k+1}\right)\left(1+\delta_{k}\right)-\left(S_{k}+x_{k+1}\right)}{S_{k+1}} \\
& =\frac{S_{k}+S_{k} \rho_{k}+x_{k+\mathbf{1}}+\left(S_{k}+S_{k} \rho_{k}+x_{k+1}\right) \delta_{k}-S_{k}-x_{k+1}}{S_{k+1}} \\
& =\frac{S_{k} \rho_{k}+\left(S_{k}+S_{k} \rho_{k}+x_{k+1}\right) \delta_{k}}{S_{k+1}} \\
& =\frac{S_{k} \rho_{k}+\left(S_{k+1}+S_{k} \rho_{k}\right) \delta_{k}}{S_{k+1}} \\
& =\delta_{k}+\frac{S_{k}}{S_{k+1}}\left(1+\delta_{k}\right) \rho_{k}
\end{aligned}
$$

Since $\left|\delta_{k}\right| \leq \varepsilon$ and $S_{k} / S_{k+1} \leq 1$ we can conclude

$$
\left|\rho_{k+1}\right| \leq \varepsilon+(1+\varepsilon) \rho_{k}
$$

Setting $\theta=1+\varepsilon$, we write this as

$$
\left|\rho_{k+1}\right| \leq \varepsilon+\theta \rho_{k}
$$

We now iterate this formula starting with $\rho_{0}=0$:

$$
\begin{aligned}
\left|\rho_{0}\right|= & 0 \\
\left|\rho_{1}\right|= & \varepsilon+\theta \cdot 0=\varepsilon \\
\left|\rho_{2}\right|= & \varepsilon+\theta(\varepsilon)=\varepsilon+\theta \varepsilon \\
\left|\rho_{3}\right|= & \varepsilon+\theta(\varepsilon+\theta \varepsilon)=\varepsilon+\varepsilon \theta+\varepsilon \theta^{2} \\
& \vdots \\
\left|\rho_{n}\right|= & \varepsilon+\varepsilon \theta+\cdots+\varepsilon \theta^{n-1} \\
= & \varepsilon\left(1+\theta+\cdots+\theta^{n-1}\right) \\
= & \varepsilon\left(\frac{\theta^{n}-1}{\theta-1}\right) \\
= & \varepsilon \frac{(1+\varepsilon)^{n}-1}{\varepsilon} \\
= & (1+\varepsilon)^{n}-1
\end{aligned}
$$

0.2. Subtraction of Nearly Equal Quanities. Another, but often avoidable, means of introducing large relative errors is by computing the difference between two nearly equal floating point numbers.

For example, let

$$
\begin{aligned}
x & =0.3721478693 \\
y & =0.3720230572 \\
x-y & =0.0001248121
\end{aligned}
$$

and suppose that the difference $x-y$ is computed on a decimal computer allowing a 5 -digit mantissa (i.e., 5 significant figures)

$$
\begin{aligned}
& f l(x)=0.37215 \\
& f l(y)=0.37202
\end{aligned}
$$

two numbers, each with 5 significant digits. When the machine computes the difference between $f l(x)$ and $f l(y)$ it obtains

$$
f l(x)-f l(y)=0.00013=1.3 \times 10^{4}
$$

a number with only two significant digits. The relative error is thus fairly large

$$
\left|\frac{x-y-[f l(x)-f l(y)]}{x=y}\right|=\left|\frac{0.000124812-0.00013}{0.000124812}\right| \approx 4 \%
$$

The following theorem gives bounds on the relative error that can be introduced by such subtraction errors.
Theorem 4.2. (Loss of Precision Theorem.) If x and y are positive normalized binary machine numbers such that $x>y$, and

$$
2^{-q} \leq 1-\frac{y}{x} \leq 2^{-p}
$$

then at most q and at least p significant binary digits will be lost in the subtraction $x-y$.

Proof. Let

$$
\begin{array}{lll}
x=r \times 2^{n} & , \quad 1 \leq r<2 \\
y=s \times 2^{m} & , \quad 1 \leq s<2
\end{array}
$$

be the normalized binary floating point forms for x and y. Since x is larger than $y, m \leq n$. In order to carry out the subtraction, a computer will first have to shift the floating point of y so that the machine representations of x and y have the same number of decimal places; effectively writing y as

$$
y=\left(s \times 2^{m-n}\right) \times 2^{n}
$$

We then have

$$
\times-y=\left(r-s \times 2^{m-n}\right) \times 2^{n}
$$

The mantissa of this expression satisfies

$$
r-s \times 2^{m-n}=r\left(1-\frac{s \times 2^{m}}{r \times 2^{n}}\right)=r\left(1-\frac{y}{x}\right)<2^{-p}
$$

To normalize this expression, expression then a shift of at least p digits is required. This means that at least p bits of precision have been lost. On the other hand, since the new mantissa also satisfies

$$
r-s \times 2^{m-n}=r\left(1-\frac{y}{x}\right)>2^{-q}
$$

then a shift of no more than q digits will be necessary to put the mantissa in standard form. Thus, at most q bits of precision have been lost.

