
LECTURE 4

Floating Point Error Analysis

We now state two theorems regarding the propagation of round off errors for sums and products.

0.1. Round-off errors induced by machine addition.

Theorem 4.1. Let x0, x1, . . . , xn be positive machine numbers in a computer whose unit roundoff error is

ε. Then the relative roundoff error of the sum

n∑

k=0

xk

is at most (1 + ε)
n
− 1 ≈ nε.

Proof. Suppose we try to compute a sum x0+x1+ · · ·+xn of machine numbers. This would be carried out
iteratively by first computing x0 + x1, rounding off to fl (x0 + x1) and then computing fl (x0 + x1) + x2
and rounding off to fl (fl (x0 + x1) + x2), etc. To see how the round off errors propagate let

Sk = x0 + x1 + · · ·+ xk

be the exact kth partial sum and let

S∗

k
= fl (S∗

k
+ xk)

be the machine-computed kth partial sum. Define

ρk =
S∗

k
− Sk
Sk

δk =
S∗

k+1
− (S∗

k
+ xk+1)

S∗

k
+ xk+1

ρk is just the relative error at the kth stage of the calculation, while δk is the round-off error incurred at
the next step. Our hypothesis is that |δk| is always ≤ ε. Using

S∗

k+1 = (S∗

k
+ xk+1) δk + S∗

k
+ xk+1 = (S∗

k
+ xk+1) (1 + δk)

S∗

k
= Skρk + Sk

Sk+1 = Sk + xk+1

1

4. FLOATING POINT ERROR ANALYSIS 2

we have

ρk+1 =
S∗

k+1
− Sk+1

Sk+1

=
(S∗

k
+ xk+1) (1 + δk) − (Sk + xk+1)

Sk+1

=
(Skρk + Sk + xk+1) (1 + δk)− (Sk + xk+1)

Sk+1

=
(Sk (1 + ρk) + xk+1) (1 + δk)− (Sk + xk+1)

Sk+1

=
Sk + Skρk + xk+1 + (Sk + Skρk + xk+1) δk − Sk − xk+1

Sk+1

=
Skρk + (Sk + Skρk + xk+1) δk

Sk+1

=
Skρk + (Sk+1 + Skρk) δk

Sk+1

= δk +
Sk

Sk+1

(1 + δk) ρk

Since |δk| ≤ ε and Sk/Sk+1 ≤ 1 we can conclude

|ρk+1| ≤ ε+ (1 + ε) ρk

Setting θ = 1 + ε, we write this as

|ρk+1| ≤ ε+ θρk

We now iterate this formula starting with ρ0 = 0:

|ρ0| = 0

|ρ1| = ε+ θ · 0 = ε

|ρ2| = ε+ θ (ε) = ε+ θε

|ρ3| = ε+ θ (ε+ θε) = ε+ εθ + εθ2

...

|ρn| = ε+ εθ + · · · + εθn−1

= ε
(
1 + θ + · · ·+ θ

n−1
)

= ε

(
θ
n
− 1

θ − 1

)

= ε
(1 + ε)

n

− 1

ε

= (1 + ε)
n

− 1

�

0.2. Subtraction of Nearly Equal Quanities. Another, but often avoidable, means of introducing

large relative errors is by computing the difference between two nearly equal floating point numbers.

For example, let

x = 0.3721478693

y = 0.3720230572

x− y = 0.0001248121

4. FLOATING POINT ERROR ANALYSIS 3

and suppose that the difference x− y is computed on a decimal computer allowing a 5-digit mantissa (i.e.,
5 significant figures)

fl(x) = 0.37215

fl(y) = 0.37202

two numbers, each with 5 significant digits. When the machine computes the difference between fl(x) and
fl(y) it obtains

fl(x)− fl(y) = 0.00013 = 1.3× 104

a number with only two significant digits. The relative error is thus fairly large
∣
∣
∣
∣

x− y − [fl(x)− fl(y)]

x = y

∣
∣
∣
∣
=

∣
∣
∣
∣

0.000124812− 0.00013

0.000124812

∣
∣
∣
∣
≈ 4%

The following theorem gives bounds on the relative error that can be introduced by such subtraction errors.

Theorem 4.2. (Loss of Precision Theorem.) If x and y are positive normalized binary machine num-
bers such that x > y, and

2
−q
≤ 1−

y

x
≤ 2−p

then at most q and at least p significant binary digits will be lost in the subtraction x− y.

Proof. Let

x = r × 2n , 1 ≤ r < 2

y = s× 2m , 1 ≤ s < 2

be the normalized binary floating point forms for x and y. Since x is larger than y, m ≤ n. In order to

carry out the subtraction, a computer will first have to shift the floating point of y so that the machine

representations of x and y have the same number of decimal places; effectively writing y as

y =
(
s× 2m−n

)
× 2n

We then have

×− y =
(
r − s× 2m−n

)
× 2n

The mantissa of this expression satisfies

r − s× 2m−n = r

(
1−

s× 2m

r × 2n

)
= r

(
1−

y

x

)
< 2−p

To normalize this expression, expression then a shift of at least p digits is required. This means that at

least p bits of precision have been lost. On the other hand, since the new mantissa also satisfies

r − s× 2m−n = r

(
1−

y

x

)
> 2−q

then a shift of no more than q digits will be necessary to put the mantissa in standard form. Thus, at most

q bits of precision have been lost.

