LECTURE 4

Floating Point Error Analysis

We now state two theorems regarding the propagation of round off errors for sums and products.

0.1. Round-off errors induced by machine addition.

THEOREM 4.1. Let xg,x1,... ,Zy be positive machine numbers in a computer whose unit roundoff error is
e. Then the relative roundoff error of the sum

n
S
k=0
is at most (1 +¢)" — 1 2 ne.

Proof. Suppose we try to compute a sum xg+ 1 + - - - + &, of machine numbers. This would be carried out
iteratively by first computing zo + x1, rounding off to fI(xo + 1) and then computing fi(xo + 1) + x2
and rounding off to fI(fl(xo+ z1) + x2), etc. To see how the round off errors propagate let

Sy =xo+T1+ -+ x5
be the exact &'" partial sum and let
Sy = fL(S; +xx)

be the machine-computed k" partial sum. Define

S-S
Pe = 3,
5 a1 — (S +Tpr1)
St +xp

pr is just the relative error at the k'* stage of the calculation, while & is the round-off error incurred at
the next step. Our hypothesis is that |6%| is always < e. Using

1 = (Sp 4+ 2pe1) 6 + S 4+ wpqq = (5] + Tprr) (14 61)
Sy = Skpr+ Sk
Skv1 = Sk+ Tpta



4. FLOATING POINT ERROR ANALYSIS 2

we have

.
Pk+1 = 7Sk+1_5k+1
Skt1

Sk +xpg1) (1 +6) — (S + Trt1)

Sht1

(Skpr + Sk + xpr1) (1 +61) — (Sk + 2ps1)

Skt
(Sk (14 pr) + 2rs1) (14 01) — (Sk + 2r41)

Sht1

Sk + Skpr + X1 + (Sk + Skpr + Tht1) 66 — Sk — Tit1

Skt

Srpr + (St + Sepr + Trt1) O

Sk+1

Skpr + (Sk+1 + Skpr) O

Skt
Sk

P S

Since |6;| < ¢ and S/Sr+1 <1 we can conclude

(14 6%) pr

1] e+ (1+¢)pr

Setting 8 = 1 + =, we write this as

lprs1] < e+ 0ps

We now iterate this formula starting with pg = 0O:

lpo] = 0

lp1] = e+0-0=¢

lp2] = e+0(s)=c+06e

lps| = e40(c+02) =+l + 6>
N et+eld - et

= e(1+60+---40"")

_ . o —1
a 6—1

1 |
_(1+¢)

= (1+¢)" -1

0.2. Subtraction of Nearly Equal Quanities. Another, but often avoidable, means of introducing
large relative errors is by computing the difference between two nearly equal floating point numbers.

For example, let

8
Il

r—y =

0.3721478693
0.3720230572
0.0001248121



4. FLOATING POINT ERROR ANALYSIS 3

and suppose that the difference x — y is computed on a decimal computer allowing a 5-digit mantissa (i.e.,
5 significant figures)

fl(x) = 037215
flly) = 0.37202
two numbers, each with 5 significant digits. When the machine computes the difference between fi(x) and
fl(y) it obtains
fl(x) — fi(y) = 0.00013 = 1.3 x 10*
a number with only two significant digits. The relative error is thus fairly large
x—y—[fllz)— fl(y)] 0.000124812 — 0.00013

~ 4
T=y 0.000124812 %

The following theorem gives bounds on the relative error that can be introduced by such subtraction errors.

THEOREM 4.2. (Loss of Precision Theorem.) If x and y are posilive normalized binary machine num-
bers such that x >y, and

2*q§1—g§2*p
T

then at most g and at least p significant binary digits will be lost in the subtraction x —y.

Proof. Let
z = rx2" | 1<r<?2
y = sx2™ | 1<s<?2

be the normalized binary floating point forms for x and y. Since x is larger than y, m < n. In order to
carry out the subtraction, a computer will first have to shift the floating point of ¥ so that the machine
representations of x and y have the same number of decimal places; effectively writing y as

Y= (s X 27”’”) x 2"
‘We then have
X —y = (r—s><2m’”) x 2"

The mantissa of this expression satisfies

2m
7“—s><2m”:7“<1—8>< ):r(l—g)<2p

r X 2" x
To normalize this expression, expression then a shift of at least p digits is required. This means that at
least p bits of precision have been lost. On the other hand, since the new mantissa also satisfies
r—s><2m’”:r<1—g) > 271
x
then a shift of no more than ¢ digits will be necessary to put the mantissa in standard form. Thus, at most
q bits of precision have been lost.



