
LECTURE 24

Error Analysis for Multi-step Methods

1. Review

In this lecture we shall study the errors and stability properties for numerical solutions of initial value
problems of the form

dx

dt
= f(t; x)(24.1)

x (t0) = x0(24.2)

Recall that the starting point for multi-step methods such as the Adams-Bashforth and Adams-Moulton
methods was actually the integral of equation (24.1)

x(tn+1)� x (tn) =

Z tn+1

tn

dx

dt
dt =

Z tn+1

tn

f(t; x)dt

By replacing f(t; x) by its polynomial intepolation at the points tn; tn�2; : : : ; tn�4 one obtains the �fth
order Adams-Bashforth formula

xn+1 = xn +

Z tn+1

tn

 
nX

i=n�4

fi`i(t)

!
dt

= xn +
h

720
(1901fn � 2774fn�1 + 2616fn�2 � 1274fn�3+ 251fn�4)

where

tn = t0 + nh

xn = x (tn)

fn = f (tn; xn)

and the numerical coe�cients in the second line are just the integrals of the cardinal functions `i(t).

Similarly, by replacing the function f(x; t) by its polynomial interpolation at the points tn+1; tn; : : : ; tn�3.
we obtained the Adams-Moulton formula

xn+1 = xn +

Z tn+1

tn

 
n+1X

i=n�3

fi`i(t)

!
dt

= xn +
h

720
(251fn+1 + 646fn � 264fn�1+ 106fn�2 � 19fn�3)

2. Linear Multi-step Methods

Of course, there's nothing to prevent us from calculating even higher order analogs of the Adams-Bashforth
and Adams-Moulton formulae. But instead of doing so explicitly, we'll now assume that we have in our
hands a k-step linear multi-step method given by a formula of the form

akxn + ak=1xn�1 + � � �+ a1xn�k�1 + a0xn�k = h [bkfn + bk�1fn�1 + � � �+ b1fn�k+1 + b0fn�k](24.3)
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2. LINEAR MULTI-STEP METHODS 2

relating k successive values of the x(t) to k successive values of the function f(t; x) (the function that de�nes
the di�erential equation). The utility of such an equation is, of course, to compute xn from the k preceding
values, xn�k; xn�k+1; : : : ; xn�1, and so we shall henceforth assume that the constant ak 6= 0. The coe�cient
bk on the right hand side may or not equal zero. If bk = 0 then we say the multi-step method corresponding
to equation (24.3) is explicit; because, in this case we can solve the equation explicitly for xn

xn = �
1

ak
(ak=1xn�1 + � � �+ a1xn�k�1+ a0xn�k) +

h

ak
[bkfn + bk�1fn�1 + � � �+ b1fn�k+1 + b0fn�k]

If bk 6= 0 we say that the corresponding method is implicit; in this case, the term fn = f (tn; xn) on the
right hand side also depends on xn and so we have an implicit algebraic equation for xn.

2.1. Convergence of Multi-Step Methods.

Definition 24.1. A multi-step method de�ned by the a formula of the form (24.3) is said to be convergent
in a region [t0; t1] if

lim
h!0

xh(t) = x(t) ; t 2 [t0; t1](24.4)

provided only that

lim
h!0

xh(t+ jh) = x0 ; 0 � j < k(24.5)

Here xh(t) is the numerical solution computed using a step size of h and x(t) is the exact solution.

This de�nition is natural enough. The following de�nitions are not so natural, but nevertheless extremely
useful.

Definition 24.2. Consider a multi-step method corresponding to a relation of the form (24.3). Set

P (z) = akz
k + ak�1z

k�1 + � � �+ a1z + a0

Q(z) = bkz
k + bk�1z

k�1 + � � �+ b1z + b0

We shall say that the method (24.3) is stable if the roots of the polynomial P (z) lie in disk jzj � 1, and
if each root such that jzj = 1 is simple. The method (24.3) is said to be consistent if P (1) = 0 and
P 0(1) = Q(1):

Theorem 24.3. Consider a multi-step method corresponding to a relation of the form (24.3). Then this
method is convergent if and only if it is both stable and consistent.

A partial proof (that of the necessity of stability and consistency for convergence) is given in the text.

2.2. The Order of Multi-step Method. The order of a multi-step method is an interger that
corresponds to the number of terms in the Taylor expansion of the solution that a multi-step method
simulates. Let us represent the multi-step method (24.3) as a linear functional

L[x] =
kX

j=0

[ajx (jh) � hbjf(jh)]

=
kX

j=0

[ajx (jh) � hbjx
0(jh)]
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Here we let k = n to simplify our notation and assume that the �rst value of in equation (24.3) begins at
t = 0, rather than t = (n � k)h. Now

x(jh) =
1X
i=0

(jh)i

i!
x(i)(0)

x0(jh) =
1X
i=0

(jh)i

i!
x(i+1)(0)

and so we can write

L[x] =
kX

j=0

"
aj

1X
i=0

(jh)i

i!
x(i)(0)� hbj

1X
i=0

(jh)i

i!
x(i+1)(0)

#

Collecting terms proportional to x(0); x0(0); : : : (or equivalently by their degree in h) we have

L[x] = d0x(0) + d1hx
0(0) + d2h

2x00(0) + � � �

where

d0 =
kX

i=0

ai(24.6)

d1 =
kX

i=0

(iai � bi)(24.7)

d2 =
kX

i=0

�
1

2
i2ai � ibi

�
(24.8)

...

dj =
kX

i=0

�
ij

j!
ai �

ij�1

(j � 1)!
bj

�
(24.9)

Theorem 24.4. The following three properties of the multi-step method (24.3) are equivalent:

1. d0 = d1 = � � � = dm = 0.
2. L[P ] = 0 for each polynomial P of degree � m.
3. L[x] is O

�
hm+1

�
for all x 2 Cm+1.

Proof.

� (1) ) (2):
If (1) is true then

L[x] = 0 + 0 + � � �+ 0 + dm+1h
m+1x(m+1)(0) + dm+2h

m+2x(m+2)(0) + � � �

But if P is a polynomial of degree � m then P (m+1)(x) = 0. Therefore, for such a polynomial

L[P ] = 0 + 0 + � � �+ 0 + dm+1h
m+1P (m+1)(0) + dm+2h

m+2P (m+2)(0) + � � �

= 0

� (2) ) (3):
If x 2 Cm+1, then by Taylor's Theorem we can write

x(t) = P (t) +R(t)

where P (t) is a polynomial of degree m and

R(t) =
x(m+1)(�)

(m+ 1)!
tm+1
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Notice that

djR

dtj

�����
t=0

= 0

Hence,

L[x] = L[P ] + L[R]

= 0 + dm+1h
m+1x(m+1)(0) + dm+2h

m+2x(m+2)(0) + � � �

= O
�
hm+1

�
� (3) ) (1)

If (3) is true, then we must have d0 = d1 = � � � = dm = 0. Hence, (3) implies (1).

Definition 24.5. The order of a multi-step method is the unique natural number m such that

0 = d0 = d1 = � � � = dm 6= dm+1

Example 24.6. What is the order of the following multistep method

xn � xn�2 =
h

3
(fn + 4fn�1 + fn�2)

� This is a three step method (k = 2), with

a2 = 1 ; a1 = 0 ; a0 = �1

b2 =
1

3
; b1 =

4

3
; b0 =

1

3

We have

d0 =
2X

k=0

ai = 1 + 0� 1 = 0

d1 =
kX
i=0

(iai � bi) =

�
0�

1

3

�
+

�
0�

4

3

�
+

�
2�

1

3

�
= 0

d2 =
kX
i=0

�
1

2
i2ai � ibi

�
= (0� 0) +

�
0�

4

3

�
+

�
4

2
�

2

3

�
= 0

d3 =
kX
i=0

�
1

6
i3ai �

1

2
i2bi

�
= (0� 0) +

�
0�

4

6

�
+

�
8

6
�

4

6

�
= 0

d4 =
kX
i=0

�
1

24
i4ai �

1

6
i3bi

�
= (0� 0) +

�
0�

4

18

�
+

�
(16)(1)

(24)
�

(8)(1)

(6)(3)

�
= 0

d5 =
kX
i=0

�
1

120
i5ai �

1

24
i4bi

�
= (0 � 0) +

�
0�

(16)(4)

24

�
+

�
(32)(1)

120
�

(16)(1)

(24)(3)

�
= �

118

45

And so the order is m = 4.

2.3.

2.4. Local Truncation Error. By a local trunction errorwe mean the error induced at a particular
stage of an iterative numerical procedure. In the case at hand, this means the error induced by using a
di�erence relation of the form (24.3) instead to obtain an estimate xn of x (tn) instead of evaluating the
exact solution at tn.
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Theorem 24.7. Consider a multi-step method corresponding to a relation of the form (24.3). Then if

x(t) 2 Ck+2(R) and if @f

@x
is continuous, we have

x (tn)� xn =
dk+1

ak
hm+1x(m+1) (tn�k) + O

�
hm+2

�
where the coe�cients are de�ned by equations (??) - (24.9)

Proof. It su�ces to prove the statement for n = k, since xn can be expressed as a solution with initial
conditions imposted at tn�k. Using the linear function L of the preceding section we have for the exact
solution x(t)

L[x] =
kX
i=0

[aix (ti) � hbix
0 (ti)] =

kX
i=0

[aix (ti)� hbif (ti; x (ti))](24.10)

On the other hand, the numerical solution fxig should satisfy

0 =
kX

i=0

[aixi � hbif (ti; xi)](24.11)

Subtracting (24.11) from (24.10) yields

L[x] =
kX

i=0

[ai (x (ti)� xi)� hbi (f (ti; x (ti)) � f(ti; xi)]

Since we are interested here only in the error induced by the current iteration of the multi-step method we
shall assume that the previously determined xi are all exactly correct: xi = x (ti). In this case, all but the
�nal terms of the summand vanish and we have

L[x] = ak (x (tk)� xk)� hbk (f (tk; x (tk))� f(tk; xk)

Writing

f (tk; xk) = f (tk; x(tk)) +
@f

@x
(�) (x (tk)� xk) ; for some � 2 [x(tk); xk]

we have

L[x] = ak (x (tk) � xk) � hbk
@f

@x
(�) ((x (tk) � xk))

= [ak � hbkF ] (x (tk)� xk)

We thus have

x (tk)� xk =
L[x]

ak � hbkF
=

dm+1h
m+1x(m+1)(tn�k) + � � �

ak � hbkF
�

dm+1h
m+1x(m+1)(tn�k)

ak
+ O

�
hm+2

�

3. Global Truncation Error

We shall now establish a bound on total error induced by the local truncation errors that occur at each stage
of a multi-step numerical method. As before we let xn represent the value of the numerical solution after n
iterations of the multi-step method and let x(tn) denote the corresponding value of the exact solution (for
the same time tn). Now the �rst thing one should realize is that the global truncation error is not simply
the sum of the local truncation errors that occur at each stage of the iterative method. For the accuracy
of a successive stage depends crucially on the accuracy of the stage that preceded it.

To get a handle on how the error of a preceding stage e�ects the error of a latter stage we consider a family
of initial value problems:

dx

dt
= f(t; x)(24.12)

x(0) = s ; s 2 R(24.13)
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We shall assume that fx �
@f

@x
is continuous and satis�es

fx(t; x) � � ; for all t 2 [0; T ] and all x 2 R

The exact solution of (24.12) and (24.13) is, of course, a function of t, but in order to make its dependence
on the initial condtion (24.13) explicit, we shall denote it by x(t; s). Thus, we write

@

@t
x (t; s) = f (t; x(t; s))

x(0; s) = s

If we di�erentiate these equations with respect to s we obtain

@

@t

@x

@s
=

@

@s

@x

@t
=

@f

@x

@x

@s
@x

@s
(0; s) = 1

Writing u = @x
@x
, and noting that the second equation tells us that u(0; s) does not depend on s, we have

u0 = fxu(24.14)

u(0) = 1(24.15)

Theorem 24.8. If fx < � then the solution of (24.14) and (24.15) satis�es the inequality

ju(t)j � e�t ; t � 0

Proof. Write

�(t) = � � fx(t)

Since fx(t) < �, �(t) is a positive function. And so we have

u0

u
= fx = �� �(t)

or

d

dt
(ln juj) � �� �(t)

Integrating both sides between 0 and t yields

ln ju(t)j � ln ju(0)j =

Z t

0

d

dt
(ln juj) dt =

Z t

0

(�� �(t)) dt = �t�

Z t

0

�(t)dt

or

ln ju(t)j < �t(24.16)

where on the left hand side we have used the initial condition u(0) = 1 and on the right hand side we have
used the fact that

�t �

Z t

0

�(t)dt < �t

since �(t) is a positive function. Noting that the exponential function is monotonically increasing, we can
maintain the inequality if we exponentiate both sides of (24.16). We thus have

u(t) < e�t

Theorem 24.9. If the inital value problem corresponding to (24.12) and (24.13) is solved with initial values
s and s + �, then the solution curves at time t di�er by at most j�je�t.
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Proof. By the Mean Value Theorem we have

jx(t; s) � x(t; s+ �)j =

����@x@s x(t + ��)

���� j�j ; for some � 2 [0; 1]

� u(t+ ��)j�j

< j�j e�t

Theorem 24.10. If the local truncation errors at t1; t2; : : : ; tn = t0+nh do not exceed � in magnitude, then
the global truncation error " does not exceed

e�tn � 1

e�h � 1
�

Proof.

At the �rst iteration the total error is just the local truncation error so

"1 = �

At the second iteration the total error is the sum of the local truncation error and the error arising from
the fact that initial condition might be o� by "1. Thus

"2 = � + e�h�

Similarly at level 3 we would have

"3 = � + e�h"2 = � +
�
� + �e�h

�
e�h = � + �e�h + �e2�h

and so on and so on until one has

"n = � + �e�h + �e2�h + � � �+ �e(n�1)�h

= �

n�1X
i=0

ei�h

= �
en�h � 1

e�h � 1

= �
e�tn � 1

e�h � 1

where in passing from the second to the third equation we have used the fact that

xn � 1 = (x � 1)(xn�1 + xn�2 + � � �+ x+ 1)

Theorem 24.11. If the local truncation error in a numerical solution of an initial value problem is of order
O(hm) then the global truncation error is of order O(hm�1).

Proof. According to the preceding theorem,

"n = �
e�tn � 1

e�h � 1

Now for, assuming we keep the �nal time tn �xed, we have for �h << 1

e�tn � 1

e�h � 1
=

e�tn � 1�
1 + �h + 1

2 (�h)
2 + � � �

�
� 1

=
e�tn � 1

�h+ 1
2 (�h)

2 + � � �

=
1

�h

�
e�tn � 1

1 + 1
2 (�h) + � � �

�

� O(h�1)
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and so

"n � O (hm) � O
�
h�1

�
= O

�
hm�1

�


