
LECTURE 20

Initial Value Problems

We shall now turn our attention to the numerical solution of initial value problems. Recall that an initial

value problem is a di�erentiatial equation supplemented by an initial condition:

dx

dt
= f(x; t)(20.1)

x (t0) = x0(20.2)

Numerical methods for solving initial value problems are extremely important, because analytic solutions of
(20.1) exist only in very special cases (linear equations, exact equations, non-exact equations with integrating
factors, and equations that are homogeneous of degree 0).

1. Existence and Uniqueness Theorems

Here is the fundamental theorem governing �rst order initial value problems.

Theorem 20.1. Suppose f and @f

@x
are continuous on the rectangle

R = f(t; xg j jt� t0j � � ; jx� xoj � �g

and

M = max
(t;x)2R

f(x; t)

then the initial value problem

dx

dt
= f(x; t) ; x (t0) = x0

has a unique solution in the interval

ft 2 R j jt� toj < min(�; �=M )g

Note that in the solution interval predicted in the theorem above may actually be smaller than the base of
the rectangle R. The following theorem allows us to infer the existence and uniqueness of a solution on a
prescribed interval [a; b].

Theorem 20.2. If f (x; t) is continuous on the strip a � t � b, �1 < x <1, and satis�es the inequality

jf(t; x1) � f(t; x2)j � L jx1 � x2j ; 8 x1; x2 2 R(20.3)

then

dx

dt
= f(x; t) ; x (t0) = x0

has a unique solution in the interval [a; b].

Note that the condition (20.3) not only restricts the behavior of f(t; x2) as x2 ! x1 (and in fact is stronger
than mere continuity at x1), it also restricts how fast f(t; x2) can grow as x2 departs from x1.
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2. TAYLOR SERIES METHOD 2

2. Taylor Series Method

Consider an initial value problem of the form

dx

dt
= f(x; t)

x (t0) = x0

and suppose that the function f on the right hand side has continuous partial derivatives up to at least
order n. We then have

d0x

dt0

�����
t0

� x (t0) = x0

d1x

dt1

�����
t0

� x0 (t0)

= f(t0; x0)

d2x

dt2

�����
t0

� x00 (t0)

=
d

dt
(f (t; x))

�����
t0

=

�
@f

@t
+

@f

@x

dx

dt

�����
to

= ft (t0; x0) + fx (t0; x0) f (t0; x0)

We can continue in this fashion to express all the derivatives df (m)=dt(m) evaluated at t0 in terms of x0 and
the partial derivatives of f evaluated at (t0; x0). We can thus carry out an nth order Taylor expansion of
a solution about x = x0

x(t) =
nX

k=0

1

k!

dkx

dtk

����
t0

tk +O
�
tn+1

�

Example 20.3. Compute the 3th order Taylor expansion of the solution to

dx

dt
= cos(t) sin(x)

x(0) =
�

2
;

We have

x(0) = 0

x0(0) = cos(0) sin(x(0)) = 1

x00(0) = (� sin(t) sin (x(t)) + cos(t) cos (x(t))x0(t))

�����
t=0

= �(0)(1) + (1)(0)(1)

= 0

x000(0) = (� cos(t) sin (x(t)) � 2 sin(t) cos (x(t))x0(t) � cos(t) sin (x(t))x0(t) � cos(t) cos (x(t))x00(t))

�����
t=0

= �(1)(1) � 2(1)(0)(1)� (1)(1)(1)� (1)(0)(0)

= �2
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Hence,

x(t) = x(0) + x0(0)t+
1

2
x00(0)t2 +

1

6
x000(0)t3 + � � �

= 1 + t�
1

3
t3 + O(t4)

The preceding algorithm does not lead to such an e�cient or accurate numerical method. It is only
recently that software that can carry out the necessary symbolic di�erentiation has appeared. But even if
the computer can be taught to carry out the di�erentiations, may take a large numbers of terms to arrive
at a result that accurate for large values of jt� toj. For error at order n will be

err =
C

(n+ 1)!
(t� to)

n

where C is some constant less than or equal to the maximum value of
��x(n+1)(t)�� on the interval between

to and t. In the example, above we would be very hard pressed to expect an accurate answer even on the
interval [0; 1].

3. Euler Method

I shall now give an easy method of constructing an (approximate) numerical solution to a di�erential
equation of the form

dx

dt
= F (t; x) ; 8 t 2 [a; b](20.4)

The beauty of this method is that it works for any �rst order di�erential equation (well, so long as the
function F (x; t) on the right hand side is a continuous function of x and t on the interval [a; b]). However, it
has a rather ugly side as well - the �nal result will not be a presentation of the solution in terms of known
functions; rather it will simply be a table of values of the solution at a discrete set of points ti 2 [a; b].

To construct our numerical solution, we begin by �rst dividing up the interval [a; b] into n subintervals. Set

�t =
b� a

n
(20.5)

and let

t0 = a(20.6)

t1 = a+�x

t2 = a+ 2�x

...

ti = a+ i�x

...

tn = a+ n�t = a+
b� a

�t
�t = b

Let xi = x (ti) denote the value of a solution of (20.4) at the point ti and let _xi =
dx
dt

(ti). The di�erential
equation (20.4) then requires

_xi = F (ti; xi) ; i = 0; 1; : : : ; n(20.7)

Now by making �t small enough, we can approximate _xi =
dx
dt

(ti) to an arbitrarily high degree of accuracy
by setting

_xi =
dx

dt
(ti) �

�x

�t
=

xi+1 � xi
�t

(20.8)
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And so, the di�erential equation (20.4) is approximately equivalent to the following set of algebraic equations

xi+1 � xi
�t

= F (ti; xi) ; i = 0; : : : ; n� 1(20.9)

Solving (20.9) for xi+1; we obtain

xi+1 = xi +�tF (ti; xi) : i = 0; 1; : : : ; n� 1(20.10)

or, more explictly,

x1 = x0 +�tF (t0; x0)(20.11)

x2 = x1 +�tF (t1; x1)(20.12)

x3 = x2 +�tF (t2; x2)(20.13)

...(20.14)

xi+1 = xi +�tF (ti; xi)(20.15)

...(20.16)

xn = xn�1 +�tF (tn�1; xn�1)(20.17)

This set of equations relates now relates all the xi; i = 1; 2; : : : ; n to x0:

To see this, note that when i = 0 equation (20.11) implies

x1 = x0 + F (t0; x0)(20.18)

But now inserting this expression for x1 into the right hand side of (20.12) yields

x2 = x0 + F (t0; x0) + F (t1; x0 + F (t0; x0))(20.19)

Thus, x2 is expressed entirely in terms of x0: We now replace the x2 on the rightt hand side of (20.13) with
the expression on the right hand side of (20.19) to express x3 directly in terms of x0: Repeating this process
n� 1 times we can express all the xi in terms of x0:

Example 20.4. Construct a numerical solution of the di�erential equation

dx

dt
= x2t ; 8 t 2 [0:1]:

such that

x(0) = 1:

on the interval [0; 1]:

Let's set n = 10; and let

�t =
1� 0

n
= :

1

10

t0 = 0

t1 = t0 +�t = 0:1

t2 = t0 + 2�t = 0:2

...

t10 = t0 + 10�t = 1

and let xi; i = 0; : : : ; 10 represent the values of x(t) when t = 0; : : : ; 10: Since in this example

F (t; x) = x2t
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equations (20.11) - (20.17) take the form

x1 = x0 + t0x
2
0�t

x2 = x1 + t1x
2
1�t

x3 = x2 + t2x
2
2�t

...

x10 = x9 + t9x
2
9�t

Since �t = 1
10 ; ti =

i
10 and x0 = x(0) = 1, in this example, these equations can also be written as

x1 = 1

x2 = x1 +
0:1

10
x21 = 1 + (0:01)(1) = 1:01

x3 = x2 +
0:2

10
x22 = (1:01) + (0:02)(1:01) = 1:0302

...

x10 = x9 +
0:9

10
x29 = 1:712852586

Alternatively, we can choose our number of sample points n to very large, say n = 1000; repeat the
calculation (on a computer) and plot the results. Doing so we get a graph like

which is not only far more accurate (in matching the exact solution), but also contains so many data points
that we don't even have to imagine connecting them to see the graph of x(t):

Below I give a simple Maple routine that automated this calculation:

n:= 100:

t[0] := 0.0:

x[0] := 1.0:

f := (x,t) -> t*x^2:

dt := (1.0)/n:
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for i from 1 to n do

t[i] := i*dt:

x[i] := x[i-1] + dt*f(x[i-1],t[i-1]):

od:

datapoints := {seq([t[i],x[i]],i=0..n)}:

with(plots):

pointplot(datapoints);


