Numerical Differentiation

We shall now look at the problems related to the calculation of derivatives via numerical methods. Now at first thought, it would seem that a numerical calculation of a derivative would be rather straightforward. For the very definition of the derivative

\[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

lends itself immediately to a natural numerical approximation for a derivative:

\[f'(x) \approx \frac{f(x + h) - f(x)}{h}, \quad h << 1. \]

It would thus seem that, if we wanted to get an extremely accurate value for the derivative of a function, all we’d have to do is pick a small enough value for \(h \) and calculate

\[\frac{f(x + h) - f(x)}{h} \]

Let’s see if this really works. Let \(f \) be the function \(f(x) = \sin(x) \), so that \(f'(x) = \cos(x) \). We will calculate \(f'(1) \) using the formula above using successively small values of \(h \).

```plaintext
f := x -> sin(x);
f1 := x -> cos(x);  # df/dx
x0 := 1.0;            # sample point
fexact := f1(x0);    # the exact result for df/dx at x=1.0
lprint('fexact =',fexact);  # print value to screen
lprint('');           # print a blank line
h := 0.5;            # initial value of h
n := 15;             # number of iterations
for i from 1 to n do
   Deltaf := f(x0 + h) - f(x0);
f1approx := Deltaf/h;
error := fexact - f1approx;
lprint(i,'h =',h,f1approx,'error =',error):
   h := h/10;
end:
```

The output of this program is

\[
\begin{align*}
\text{f1exact} & = 0.5403023059 \\
1 & \quad h = 0.5 \quad \text{f1approx} = 0.3120480036 \quad \text{error} = 0.2282543023 \\
2 & \quad h = 0.0000000000e-1 \quad \text{f1approx} = 0.5190448160 \quad \text{error} = 0.2125748999e-1 \\
3 & \quad h = 0.0000000000e-2 \quad \text{f1approx} = 0.5381963800 \quad \text{error} = 0.2105925989e-2 \\
4 & \quad h = 0.0000000000e-3 \quad \text{f1approx} = 0.5403023000 \quad \text{error} = 0.21030598e-3
\end{align*}
\]
Here's one simple way to do that. Suppose we take the difference of the following two second order Taylor formulae

\begin{align*}
5 & \quad h = .50000000000e-4 \quad f_1 \approx = .5402820000 \quad \text{error} = .203059e-4 \\
6 & \quad h = .50000000000e-5 \quad f_1 \approx = .5403000000 \quad \text{error} = .23059e-5 \\
7 & \quad h = .50000000000e-6 \quad f_1 \approx = .5404000000 \quad \text{error} = -.976941e-4 \\
8 & \quad h = .50000000000e-7 \quad f_1 \approx = .5400000000 \quad \text{error} = .3023059e-3 \\
9 & \quad h = .50000000000e-8 \quad f_1 \approx = .5400000000 \quad \text{error} = .3023059e-3 \\
10 & \quad h = .50000000000e-9 \quad f_1 \approx = 1.000000000 \quad \text{error} = -.4596976941 \\
11 & \quad h = .50000000000e-10 \quad f_1 \approx = 0 \quad \text{error} = .5403023059 \\
12 & \quad h = .50000000000e-11 \quad f_1 \approx = 0 \quad \text{error} = .5403023059 \\
13 & \quad h = .50000000000e-12 \quad f_1 \approx = 0 \quad \text{error} = .5403023059 \\
14 & \quad h = .50000000000e-13 \quad f_1 \approx = 0 \quad \text{error} = .5403023059 \\
15 & \quad h = .50000000000e-14 \quad f_1 \approx = 0 \quad \text{error} = .5403023059 \\
\end{align*}

Notice that our closest estimate does not occur for the smallest value of h: in fact, once h is smaller than 5×10^{-6} our estimates for $f'(1.0)$ get progressively worse. Indeed, even as we approach the optimal value of h we have a problem; for we start losing significant digits at $i = 3$.

The loss of significant digits, of course, can be traced to the *subtraction error* that occurs when we try to compute the difference between two floating point numbers of about the same size: e.g.,

\[1.1234567 \times 10^7 - 1.1234566 \times 10^7 = 0.000001 \times 10^7 \]

The complete failure of this algorithm for very small values of h ($i > 10$) has to do with the fact that there is only a discrete set of machine numbers; for once h gets small enough $f(x + h)$ and $f(x)$ will correspond to the same machine number and so their computed difference will be zero.

In summary, we **can not** improve the accuracy of numerical computations of derivatives by simply making h small enough. What we shall try to do instead is to make our computations as accurate as possible for fixed values of h.

We'll thus need to analyze the error inherent in the approximation

\[f'(x) \approx \frac{f(x + h) - f(x)}{h} \]

Recall that the 1st order Taylor formula (with Lagrange Remainder)

\[f(x + h) = f(x) + f'(x)h + \frac{1}{2}f''(\xi_x)h^2 \]

is an exact identity for some point $\xi_x \in [x, x + h]$. Solving this equation for $f'(x)$ we obtain

\[f'(x) = \frac{f(x + h) - f(x)}{h} - \frac{1}{2}f''(\xi_x)h \]

This tells us that the error involved in estimating $f'(x)$ using (18.1) is of order h. Now as we seen above, making h smaller as a means of improving our accuracy is only effective up to a point (the point where subtraction and floating point errors kick in). We might therefore look for means for estimating $f'(x)$ such that the error term is of higher order in h.

Here's one simple way to do that. Suppose we take the difference of the following two second order Taylor formulae

\begin{align*}
5 & \quad f(x + h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{6}f'''(\xi_1)h^3, \quad \xi_1 \in [x, x + h] \\
6 & \quad f(x - h) = f(x) - f'(x)h + \frac{1}{2}f''(x)h^2 - \frac{1}{6}f'''(\xi_2)h^3, \quad \xi_2 \in [x - h, x] \\
\end{align*}
\[
\begin{align*}
\Rightarrow & \quad f(x + h) - f(x - h) = 2f'(x)h + \frac{1}{6} (f'''(\xi_1) - f'''(\xi_1)) h^3 \\
\Rightarrow & \quad f'(x) = \frac{f(x + h) - f(x - h)}{2h} + \frac{1}{6} \left(f'''(\xi_1) - f'''(\xi_2) \right) h^2 \\
\Rightarrow & \quad f'(x) = \frac{f(x + h) - f(x - h)}{2h} + \frac{1}{6} f'''(\xi) h^2, \quad \xi \in [x - h, x + h]
\end{align*}
\]

where in the last step we have applied the Mean Value Theorem for \(f'''(x) \) on the interval \([x - h, x + h]\). We thus arrive at an estimate for \(f'(x) \) for which the error term is of order \(h^2 \).

If we replace the do-loop in the Maple code above with

```maple
for i from 1 to n do
    Deltaf := f(x0 + h) - f(x0 - h);
    fiapprox := Deltaf/(2*h);
    error := f1exact - fiapprox;
    lprint(i, 'h =', h, 'fiapprox =', fiapprox, 'error =', error);
    h := h/10;
end do;
```

we get the following output

```
1  h = .5  fiapprox = .5180694480  error = .223238879e-1
2  h = .5000000000e-1  fiapprox = .5400772080  error = .2250979e-3
3  h = .5000000000e-2  fiapprox = .5403006590  error = .22559e-5
4  h = .5000000000e-3  fiapprox = .5403023000  error = .59e-8
5  h = .5000000000e-4  fiapprox = .5403030000  error = -.6941e-6
6  h = .5000000000e-5  fiapprox = .5403000000  error = .23059e-5
7  h = .5000000000e-6  fiapprox = .5403000000  error = .23059e-5
8  h = .5000000000e-7  fiapprox = .5400000000  error = .3023059e-3
9  h = .5000000000e-8  fiapprox = .5400000000  error = .3023059e-3
10 h = .5000000000e-9  fiapprox = .8000000000  error = -.2596796941
11 h = .5000000000e-10 fiapprox = 0  error = .5403023059
12 h = .5000000000e-11 fiapprox = 0  error = .5403023059
13 h = .5000000000e-12 fiapprox = 0  error = .5403023059
14 h = .5000000000e-13 fiapprox = 0  error = .5403023059
15 h = .5000000000e-14 fiapprox = 0  error = .5403023059
```

Looking at this data, we see that we have the same problem as before with extremely small values of \(h \). However, we are able to achieve an absolute error of \(0.59 \times 10^{-8} \) in 4 steps; which is much better than the earlier method (for which the least error was \(0.23059 \times 10^{-5} \) and which took 6 steps to reach.)
1. Richardson Extrapolation

We can do even better though. Let’s assume \(f(x) \) is a smooth function so that we can write

\[
\begin{align*}
 f(x + h) &= \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x) h^k = f(x) + f'(x) h + \frac{1}{2} f''(x) h^2 + \frac{1}{6} f'''(x) h^3 + \cdots \\
 f(x - h) &= \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x) (-h)^k = f(x) - f'(x) h + \frac{1}{2} f''(x) h^2 - \frac{1}{6} f'''(x) h^3 + \cdots
\end{align*}
\]

Note that since the series expansions are infinite, we can regard these as exact equations. Subtracting these two equations and solving for \(f'(x) \) yields

\[
 f'(x) = \frac{1}{2h} [f(x + h) - f(x - h)] - \left[\frac{1}{3!} f'''(x) h^2 + \frac{1}{5!} f^{(5)}(x) h^4 + \frac{1}{7!} f^{(7)}(x) h^6 + \cdots \right]
\]

Let us write this as

\[
 f'(x) = \phi_0(h) + a_2 h^2 + a_4 h^4 + a_6 h^6 + \cdots
\]

where

\[
\begin{align*}
 \phi_0(h) &= \frac{1}{2h} [f(x + h) - f(x - h)] \\
 a_2 &= \frac{1}{3!} f'''(x) \\
 a_4 &= \frac{1}{5!} f^{(5)}(x) \\
 a_6 &= \frac{1}{7!} f^{(7)}(x)
\end{align*}
\]

This equation should be true for all small \(h \), in particular for \(h/2 \). So we should also have

\[
 f'(x) = \phi_0 \left(\frac{h}{2} \right) + a_2 \left(\frac{h}{2} \right)^2 + a_4 \left(\frac{h}{2} \right)^4 + a_6 \left(\frac{h}{2} \right)^6 + \cdots
\]

If we then subtract 1/3 times equation (18.4) from 4/3 times equation (18.5) we can arrange it so that the terms of order \(h^3 \) cancel, obtaining

\[
 f'(x) = -\frac{1}{3} \phi_0 (h) + \frac{4}{3} \phi_0 \left(\frac{h}{2} \right) - \frac{1}{4} a_4 h^4 - \frac{5}{16} a_6 h^6 + \cdots
\]

We thus achieve an expression for \(f'(x) \) where the error term is of order \(h^4 \).

Having achieved this success, we might as well continue. Equation (18.6) is good (and in fact, exact) for all sufficiently small \(h \). Setting

\[
\begin{align*}
 \phi_1(h) &= \frac{1}{3} \phi_0(h) + \frac{4}{3} \phi_0 \left(\frac{h}{2} \right) \\
 b_4 &= -\frac{1}{4} a_4 \\
 b_6 &= -\frac{5}{16} a_6
\end{align*}
\]

we can again write down two equivalent expressions for \(f'(x) \)

\[
\begin{align*}
 f'(x) &= \phi_1(h) + b_4 h^4 + b_6 h^6 + \cdots \\
 f'(x) &= \phi_1(h/2) + \frac{1}{16} b_4 h^4 + \frac{1}{64} b_6 h^6 + \cdots
\end{align*}
\]
If we then subtract \(\frac{1}{15} \) times the first equation from \(\frac{16}{15} \) times the first we obtain

\[
f' (x) = - \frac{1}{15} \phi_1 (h) + \frac{16}{15} \phi_1 \left(\frac{h}{2} \right) + \frac{1}{15} \left(\frac{1}{4} - 1 \right) b_6 h^6
\]

We thus obtain an expression for \(f'(x) \)

\[
f'(x) \approx \phi_2 (x) \equiv - \frac{1}{15} \phi_1 (h) + \frac{16}{15} \phi_1 \left(\frac{h}{2} \right)
\]

that is accurate to order \(h^6 \). It should be clear that this process can be continued until

Let’s now turn this into a numerical algorithm. The first thing to do is to identify the pattern that mediates the successive expressions for \(f(x) \). We have

\[
\phi_0 (h) \equiv \frac{f(x + h) - f(x - h)}{2h}
\]

\[
\phi_1 (h) = - \frac{1}{3} \phi_0 (h) + \frac{4}{3} \phi_0 \left(\frac{h}{2} \right) = - \frac{1}{4^1 - 1} \phi_0 (h) + \frac{4^1}{4^1 - 1} \phi_0 \left(\frac{h}{2} \right)
\]

\[
\phi_2 (h) = - \frac{1}{15} \phi_1 (h) + \frac{16}{15} \phi_1 \left(\frac{h}{2} \right) = - \frac{1}{4^2 - 1} \phi_1 (h) + \frac{4^2}{4^2 - 1} \phi_1 \left(\frac{h}{2} \right)
\]

and so it would seem

\[
\phi_i (h) = - \frac{1}{4^i - 1} \phi_{i-1} (h) + \frac{4^i}{4^i - 1} \phi_{i-1} \left(\frac{h}{2} \right)
\]

Before translating this into computer code. Let’s make the following definition. Let

\[
R_h [n, i] := \phi_i \left(h 2^{-n} \right)
\]

We then have

\[
R_h [n, 0] \equiv \phi_0 \left(2^{-n} \right) = \frac{f(x + 2^{-n} h) + f(x - 2^{-n} h)}{2^{-n+1} h}
\]

and the recursive formulae

\[
R_h [n, i] \equiv - \frac{1}{4^i - 1} R_h [n, i - 1] + \frac{4^i}{4^i - 1} R_h [n + 1, i - 1]
\]

This quantity \(R_h [n, i] \) will be the \(i^{th} \) order Richardson Expolation of \(f'(x) \) with \(h = 2^{-n} \).

The following program calculates the fourth order Richardson Extrapolation of \(f'(1.0) \) for \(f(x) = \sin(x) \).

```plaintext
R[0] := (f(x+h) - f(x-h))/(2*h);
for i from 1 to 4 do
    p1 := R[i-1]/(4^i - 1);
    p2 := (4^i)*subs({h=h/2},p1);
    R[i] := p2 - p1;
do:
R4 := R[4];
f := x -> evalf(sin(x));
dfapprox := (x1,h1) -> subs({x=x1,h=h1},R4);
x0 := 1.0;
h0 := 0.1;
for i from 1 to 10 do
    dfR4 := evalf(dfapprox(x0,h0));
    lprint('h =',h0,'dfR4 = ', dfR4);
```
h0 := h0/10;

This program produces the following output.

\[
\begin{array}{ll}
\hline
h & dfR4 \\
\hline
.1 & .5403023038 \\
.1000000000e-1 & .5403023410 \\
.1000000000e-2 & .5403028570 \\
.1000000000e-3 & .5403029364 \\
.1000000000e-4 & .5402236374 \\
.1000000000e-5 & .5418266476 \\
.1000000000e-6 & .506746747 \\
.1000000000e-7 & .71775075 \\
.1000000000e-8 & 2.9495862 \\
.1000000000e-9 & 0.0 \\
\hline
\end{array}
\]

Of course, exact answer is \(\cos(1.0) = 0.5403023059 \). We thus see that we can achieve a very accurate result (correct to 7 decimal places on the very first iteration. The fact that we don’t get much better results for smaller values of \(h \) is of course due to the fact that, for a given value of \(h \), subtraction errors kick in much earlier for the Richardson Extrapolation. For example in computing the fourth order Richardson Extrapolation the program needs to calculate

\[
f \left(x + \frac{h}{2^n} \right) - f \left(x - \frac{h}{2^n} \right);
\]

And so in practice, when one employs an \(n^{th} \) order Richardson Extrapolation one has to be sure that \(h/2^n \) is not too small.