
LECTURE 17

Algorithms for Polynomial Interpolation

We have thus far three algorithms for determining the polynomial interpolation of a given set of data.

1. Brute Force Method. Set

P (x) = anx
n + an�1x

n�1 + � � �+ a1x+ a0

and solve the following set of n+ 1 equations

an (x0)
n
+ an�1 (x0)

n�1
+ � � �+ a1x0 + a0 = y0

an (x1)
n + an�1 (x1)

n�1 + � � �+ a1x1 + a0 = y1

...

an (xn)
n + an�1 (xn)

n�1 + � � �+ a1xn + a0 = yn

for the n+ 1 coe�cients.
2. Newton Form Method. Set

P (x) = c0 + c1(x� x0) + c2(x� x0)(x � x1) + � � �+ cn(x� x0) (x� x1) � � � (x� xn�1)

and use the following recursive formulae to determine the coe�cients ck:

ck =
yk � Pk�1(xk)

(xk � x0) (xk � x1) � � � (xk � xk�1)

Pk(x) = Pk�1(x) + ck (x� x0) (x� x1) � � � (x� xk�1)

3. Lagrange Form Method. For k = 0; 1; : : : ; n compute the cardinal functions

`k(x) =
nY

j=0
j 6=k

(x� xj)

(xk � xj)
=

(x� x0) (x� x1) � � � (x� xk�1) (x� xk+1) � � � (x� xn)

(xk � x0) (xk � x1) � � � (xk � xk�1) (xk � xk+1) � � � (xk � xn)

and then set

P (x) =
nX

k=0

yk`k(x)

There is one more method that is, computationally, much more e�cient than any of the algorithms above.
This is the so-called method of divided di�erences.

Notation 17.1. Let f(xi; yi) j i = 0; : : : ; ng be an ordered set of n + 1 data points, let xk; xk+1; : : : ; xk+j

be any set of j consecutive nodes and let

Pk(x) = ck;0 + ck;1 (x� xk) + ck;2 (x� xk) (x� xk+1) + � � �+ ck;j (x� xk) (x� xk+1) � � � (x� xk+j�2) (x� xk+j�1)

be the Newton form of the interpolation polynomial for f(xi; yj) j i = k; : : : ; k+ jg. The divided di�er-

ence

f [xk; xk+1; : : : ; xk+j]

is the highest order coe�cient ck;j of Pk(x).

1



17. ALGORITHMS FOR POLYNOMIAL INTERPOLATION 2

Remark 17.2. Note that if we set k = 0 then the divided di�erences f [x0; x1; xj] are just the coe�cients
cj appearing in the Newton of the interpolation polynomial for f(xi; yi) j i = 0; : : : ; ng : For in this case,
the polynomials

Pj(x) = Pj�1(x) + cj (x� x0) (x� x1) � � � (x� xj�1)

and

P0(x) = ck;0 + ck;1 (x� x0) + ck;2 (x� x0) (x� x1)

P0(x) = ck;0 + ck;1 (x� x0) + ck;2 (x� x0) (x� x1) + � � �

� � �+ c0;j (x� x0) � � � (x� xj�1) + � � �+ c0;n (x� x0) � � � (x� xn�1)

= f [x0] + f [x0; x1] (x� x0) + f [x0; x1; x2] (x� x0) (x� x1) + � � �

� � �+ f [x0; x1; : : : ; xj] (x� x0) � � � (x� xj�1) + � � �

� � �+ f [x0; x1; : : : ; xn] (x� x0) � � � (x� xn�1)

= c0 + c1(x� x0) + c2k;2 (x� x0) (x� x1) + � � �

� � �+ cj (x� x0) � � � (x� xj�1) + : : :

� � �+ cn (x� x0) � � � (x� xn�1)

Theorem 17.3. The divided di�erences satisfy the following recursion relations

f [xi; xi+1; : : : ; xi+j] =
f [xi+1; xi+1; : : : ; xi+j]� f [xi; xi+1; : : : ; xi+j�1]

xi+j � xi

Proof. It su�ces to prove this for i = 0 and j = n: because for any other choice of i or j, we can always
construct a new set of data f(~xk; ~yk) = (xi+k; yi+k) j k = 0; 1; : : : ; ~n = jg for which the relation

f [~x0; ~x1; : : : ; ~x~n] =
f [~x1; : : : ; ~xn]� f [~x1; : : : ; ~x~n�1]

~x~n � ~x0

is equivalent to the relation in the problem statement. Let Pn�1(x) be the polynomial of degree � n � 1
that interpolates the data at the �rst n data points f(x0; y0) ; : : : ; (xn�1; yn�1)g and let Qn�1(x) be the
polynomial that interpolates the data at the last n data points f(x1; y1) ; : : : ; (xn; yn)g. Then if we set

Q(x) = Qn�1(x) +
x� xn

xn � x0
(Qn�1(x) � Pn�1(x))

then

Q(xi) =

8<
:

Qn�1(x0) +
x0�xn
xn�x0

(Qn�1(x)� Pn�1(x)) = Pn�1 (x0) = y0 ; if i = 0

Qn�1(xi) +
xi�xn
xn�x0

(Qn�1(xi)� Pn�1(xi)) = yi �
xi�xn
xn�x0

(0) = yi ; if 0 < i < n

Qn�1(xn) +
xn�xn
xn�x0

(Qn�1(xn)� Pn�1(xn)) = yn ; if i = n

Therefore, Q(x) is the interpolation polynomial P (x) for the data f(xi; yi) j i = 0; : : : ; ng. Now the coe�-
cient of the highest power of x for P (x) is

P (x) � f [x0; : : : ; xn] (x� x0) � � � (x� xn) � f [x0; : : : ; xn]x
n + O

�
xn�1

�
while the coe�cient of the highest power of x for Q(x) will be

Q(x) �
x� xn

xn � x0
((f [x1; : : : ; xn] (x� x1) � � � (x� xn)� f [x0; : : : ; xn�1] (x� x0) � � � (x� xn�1)) +O

�
xn�1

�

�

�
f [x1; : : : ; xn]

xn � x0
�

f [x0; : : : ; xn�1]

xn � x0

�
xn � O

�
xn�1

�

Since the highest order coe�cients must agree we have

f [x0; : : : ; xn] =
f [x1; : : : ; xn]� f [x0; : : : ; xn�1]

xn � x0



17. ALGORITHMS FOR POLYNOMIAL INTERPOLATION 3

Now consider how we might construct the interpolation polynomial using divided di�erences. Suppose P (x)
is the interpolation polynomial for a problem with four data points x0; x1; x2; x3. We then have

P (x) = c0 + c1(x� x0) + c2(x� x0)(x� x1) + c3(x� x0)(x� x1)(x� x2)

= f [x0] + f [x0; x1](x� x0) + f [x0; x1; x2] (x� x0)(x� x1) + f [x0; x1; x2; x3] (x � x0)(x � x1)(x� x2)

Now according to the preceding theorem

f [x0; x1; x2; x3] =
f [x1; x2; x3]� f [x0; x1; x2]

x3 � x0

=
1

x3 � x0

�
f [x2; x3]� f [x1; x2]]

x3 � x1
�

f [x1; x2]� f [x0; x1]

x1 � x0

�

=
1

(x3 � x0)(x3 � x1)

�
f [x3]� f [x2]

x3 � x2
�

f [x2]� f [x1]

x2 � x1

�

�
1

(x3 � x0)(x1 � x0)

�
f [x2]� f [x1]

x2 � x1
�

f [x1]� f [x0]

x1 � x0

�

=
1

(x3 � x0)(x3 � x1)

�
y3 � y2

x3 � x2
�

y2 � y1

x2 � x1

�

�
1

(x3 � x0)(x1 � x0)

�
y2 � y1

x2 � x1
�

y1 � y0

x1 � x0

�

However, this is not how we'll want to compute divided di�erences (by breaking down the complicated
f [x0; : : : ; xi] to the original data). Rather, we'll employ a bottoms up approach. For notational and
calculational convenience, we'll set

F [[i; 0] � f [xi] = yi

F [i; j] � f [xi; xi+1; : : : ; xi+j]

so that our recursion relations

f [xi; xi+1; : : : ; xi+j] =
f [xi+1; : : : ; xi+j]� f [xi; : : : ; xi+j=1]

xi+j � xi

can be expressed a bit more succinctly as

F [i; j] =
F [i+ 1; j � 1]� F [i; j � 1]

xi+j � xi

� Step 1. Set

F [i; 0] = yi ; i = 0; : : : ; n

� Step 2. Set

F [i; 1] =
F [i+ 1; 0]� F [i; 0]

xi+1 � xi
; i = 0; : : : ; n� 1

� Step 3. Set

F [i; 2] :=
f [i + 1; 1]� f [i; 1]

xi+2 � xi
; i = 0; : : : ; n� 2

�
...

� Step n� 1. Set

f [i; : : : ; n� 1] :=
f [i + 1; n� 2]� f [i; n � 2]

xn � x0
; i = 0; 1

� Step n. Set

F [0; n] :=
F [1; n� 1]� F [0; n� 1]

xn � x0
;



17. ALGORITHMS FOR POLYNOMIAL INTERPOLATION 4

� For each i from 0 to n, set

ci = F [0; i] � f [x0; x1; : : : ; xi]

� The Newton form of the interpolation polynomial will then be

P (x) =
nX

i=0

ci

0
@i�1Y

j=0

(x � xj)

1
A

The following Maple code implements this algorithm.

#initialize array F[i,0]

for i from 0 to n do

F[i,0] := Y[i];

od:

#apply recursion relations

for j from 1 to n do

for i from 0 to n-j do

F[i,j] := (F[i+1,j-1] - F[i,j-1])/(X[i+j] - X[i]);

od:

od:

#construct Newton form of interpolation polynomial

p := F[0,0]; # = Y[0];

g := 1

for i from 1 to n do

g := (x-X[i-1])*g

p := p + F[0,i]*g;

od:

#identify the total coefficient of each power of x

for i from 0 to n do

c := coeff(p,x,i):

c := evalf(c,3):

lprint(`coefficient of x to the`,i,`is`,c):

od:

Suppose we implement this code on a test function like

T (x) = 2x8 � 10x5 � 20x� 50 ;

setting up our data points in the following simple-minded way

xi = a+
b� a

n
i

yi = T (xi)

for various choices of n, and intervals [a; b]. Surprisingly, we don't get consistent results. For example, for
n = 10, [a; b] = [�10; 10], we obtain

P (x) = (0:0)x10 + (0:0)x9 + (2:0)x8 + (0:0)x7 + (0:0)x6 � (10:0)x5

+(0:0)x4 + (0:0)x3 + (0:0)x2 + (6:0� 105)x+ (1:0� 101)



17. ALGORITHMS FOR POLYNOMIAL INTERPOLATION 5

On the other hand, taking n = 10, [a; b] = [�0:005; 0:005], we obtain

P (x) = �(2:8� 105)x10 + (�1:4� 105)x9 + (827)x8 + (41:3)x7� (7:52)x6� (10:0)x5

+(2:3� 10�4)x4 + (1:1� 10�5)x3 + (1:6� 10�8)x2 � (20:0)x� (50:0)

Of course, such discrepancies can be traced to the 
oating point errors in the numerical algorithm. The
way to get around such inconsistencies is to take a three step approach.

� Carry out an interpolation in a region [a; b] where the data is changing very rapidly to get a handle
on the higher degree terms of P (x).

� Carry out an interpolation in a region [a; b] where the rate at which data is changing rather moderately
to get a handle on the lower degree terms of P (x).

� Look for a region where the high degree terms and the low degree terms have about the same in
uence
to get a �nal interpolation for P (x).

Note, however, that the test regions described above need not be near the origin, nor can there sizes be
predicted a priori. Consider, for example, what might be appropriate regions for interpolating the following
polynomial

T (x) = 10�6
h
(x� 500)5 � x+ 500

i


