LECTURE 17

Algorithms for Polynomial Interpolation

We have thus far three algorithms for determining the polynomial interpolation of a given set of data.

1. Brute Force Method. Set
P(z) = apa™ + 12 Nt ay + ag

and solve the following set of n 4+ 1 equations

an (ﬂﬁo)n+an—1(l‘o)n_1+~~~+a1l‘0+ao = Y
ay, (1‘1)”-1-%—1(901)”_1-1-~~~+a1l‘1+ao = n
Up (xn)n+an—1 (xn)n_1+"'+a1xn+a0 = Yn

for the n 4+ 1 coefficients.
2. Newton Form Method. Set

Plx)=cotci(z—mo)+ (e —ao)(x —21)+Fen(e—mo) (x—21) (2 — 2p—1)

and use the following recursive formulae to determine the coefficients cg:

- yr — Pr_1(zy)
(zp — o) (w5 — 21) - (2p — Tp—1)
Pi(z) = Pi(@)+ep(z—mg)(x—a1) - (x —ap_1)
3. Lagrange Form Method. For &k = 0,1,... ,n compute the cardinal functions

) e) e —a) (o= a) e = a)
o) = 1L =0y = T e e —) ow = 2] (71— i) (o = 2]
=

S,

and then set

P(z) = Zykﬁk(l‘)

There is one more method that is, computationally, much more efficient than any of the algorithms above.
This is the so-called method of divided differences.

NoTaTIoN 17.1. Let {(z;,4:) | i =0,...,n} be an ordered set of n + 1 data points, let &g, zpy1,. .., Zrts
be any set of j consecutive nodes and let

Pel(r) =croteri(@—ap)tepo(e—ar) (2 —2pg1) + - Feny (@ —2p) (20— 2pg41) - (2 — Zpgj2) (0 — Brgj1)

be the Newton form of the interpolation polynomial for {(x;,y;) |i=4%,...,k+ j}. The divided differ-
ence

f [$ka xk‘-l—la e a$k+]]

is the highest order coefficient ¢ ; of P ().

17. ALGORITHMS FOR POLYNOMIAL INTERPOLATION 2

REMARK 17.2. Note that if we set & = 0 then the divided differences f[zo, x1, z;] are just the coefficients
¢; appearing in the Newton of the interpolation polynomial for {(z;,3;) |7 =0,...,n}. For in this case,
the polynomials

Pi(z) = Pj_a(z) +¢j (x — o) (z — 1) - (2 — 25-1)
and

Po(z) = cpo+ cra1 (2 —20) + cro(2— 20) (2 — 1)

Po(xr) = crotern(z—20)+epa(e—xo)(z—z)+ -
tco (e —wo) (2 —xjo)+ - cop (B —x0) - (r— 2py)
= fleol+ flwo, 1] (& — 2o) + f w0, 21, 22] (. — 20) (x — 1) + - -
ot fleo,z, .z (@ —xo) (e — i)+
o flro e, 0] (=) (2 — 2 1)
= c¢oFe(z—xo)+ e (z—a0) (2 —21) +
e (m—xo) (e —xio1) ...
o ben (z— o) (2 — Tpo1)

THEOREM 17.3. The divided differences satisfy the following recursion relations

Jlrisn, igr, - xigg) — Floi ®igr, o 2igy—1]

xi+j — Iy

fleizigr, .. xigg] =

Proof. 1t suffices to prove this for ¢ = 0 and j = n: because for any other choice of 7 or j, we can always

construct a new set of data {(Zx, ¥x) = (Tigk, Yirk) | K =0,1,... 7 = j} for which the relation
f[jO,j1,~~~ ,i‘ﬁ]: f[xla"' aan_f[xla"' axﬁ—l]
Ty — X

is equivalent to the relation in the problem statement. Let P,_;(x) be the polynomial of degree < n — 1

that interpolates the data at the first n data points {(zo,40),...,(#n—1,¥n—1)} and let @,_1(x) be the

polynomial that interpolates the data at the last n data points {(x1,¥1),..., (Zn, ¥n)}. Then if we set
Q(r) = Qn-a1(z) + no (Qn-1(z) = Poo1(x))

r— T

Ty —

then

Qn-1(x0) + 3= (Qn-1(2) = Poo1(2)) = Poci (o) =90, ifi=0
Qi) = { Quor(v) + 2228 (Quoy (1) — Paca(w) = i — 2=22(0) =y, , H0<i<n
Qn—l(xn)+ﬁ(@n—l(xn)_Pn—l(xn)):yn ; le:n

Therefore, Q(z) is the interpolation polynomial P(x) for the data {(z;,%;) |7 =0,...,n}. Now the coeffi-
cient of the highest power of z for P(z) is

P(x)m fleo,...,ep) (e —xg) - (2 —2p) & f 2o, .. ,xn]x"—i—(’)(l‘"_l)
while the coefficient of the highest power of # for @(z) will be

x— x,

Qr) =~ xn_xo((f[xl,...,xn](x—x1)~~~(x—xn)—f[xo,...,xn_l](x—x0)~~~(x—xn_1))—I—O(x"_l
o (f[xl,...,xn]_f[a:o,...,xn_l])xn_o(xn_l)

Ln — L0 Ln — L0

Since the highest order coefficients must agree we have

Flew, o zn] — flzo, o @aei]

Ln — L0

flzo, .. a0 =

17. ALGORITHMS FOR POLYNOMIAL INTERPOLATION 3

Now consider how we might construct the interpolation polynomial using divided differences. Suppose P(x)
is the interpolation polynomial for a problem with four data points g, 1, 2, x3. We then have

P(x) = coter(e—zg)+ea(w—ro)(e— 1)+ es(e—ao)(z —21)(x — 22)
= f[$0] + f[xO, l‘l](l‘ - $0) + f [l‘o, L1, l’z] (l‘ - $0)($ - $1) + f [l‘o, L1, T2, l‘g] (l‘ - l‘o)(l’ - $1)($ - $2)
Now according to the preceding theorem

fler, 2, 23] — flxo, 21, 2]

f[x0a$1a$2ax3] =

L (Sl flrvel Sl - flror
= : __x:)g(x - :: Eﬁ;;] = i[l‘z] 3 f[l‘:zﬁ E Z:(El‘l]))
_; _Ox)1; _;) (f[;;] :Z[ﬂﬁl] N f[;‘;]:li[%])

_ 1 (ys—yz_yz—y1)

B (903—900)(1‘3—901) Tr3 — T3 Tg — T
_ 1 (yZ_yl_yl_yO)
(1‘3—900)(901 —l‘o) Tg — T Tr1 — T

However, this is not how we’ll want to compute divided differences (by breaking down the complicated
flzo, ..., ;] to the original data). Rather, we’ll employ a bottoms up approach. For notational and
calculational convenience, we’ll set

F[[i,0] = flzil=w

Fli,j] = flzi, g1, i)
so that our recursion relations
f[$ia Tigly - axi-l-j] = [i+ : Z+]] [- Rtk 1]
xi+j — Iy

can be expressed a bit more succinctly as
Fli+1,j-1]- Fli,j—1]

Pl =
(i, j] Pap——
e Step 1. Set
Fli,0l=y; , 1=0,...,n
e Step 2. Set
Fli+1,0]— F[i
Fli,1] = i+ 10 FILOL
Lit1 — T4
e Step 3. Set
i+ 1,1]— fli, 1
F[Z,Q]—f[l—i_’] f[lﬁ] , ZZO, ’n_2
Lit2 — L5
[2N
e Step n — 1. Set
i+ 1,n—2]— fli,n —2
f[i,...,n—l]::ﬂl_i_ n=2 - flin-2 . i=0,1
Ty — X0
e Step n. Set

mey:F@n—ﬂ—me—ﬂ |

Ln — L0

17. ALGORITHMS FOR POLYNOMIAL INTERPOLATION 4

e For each 7 from 0 to n, set
¢; = F[0,i] = flzo, 21, ..., 2

e The Newton form of the interpolation polynomial will then be

P =Y e | Tl =)

The following Maple code implements this algorithm.

#initialize array F[i,0]

for i from 0 to n do
F[i,0] := Y[il;

od:

#apply recursion relations
for j from 1 to n do
for i from 0 to n-j do
F[i,j] := (F[i+1,j-11 - Fli,j-11)/(X[i+j]1 - X[il);
od:
od:

#construct Newton form of interpolation polynomial
p := F[0,0]; # = Y[0];
g =1
for i from 1 to n do
g = (x-X[i-1])*g
= p + F[0,i]*g;

P :
od:

#identify the total coefficient of each power of x

for i from 0 to n do

¢ := coeff(p,x,i):

c := evalf(c,3):

lprint(‘coefficient of x to the‘,i, ‘is
od:

“,¢):

Suppose we implement this code on a test function like
T(z) = 22% — 102° — 202 — 50
setting up our data points in the following simple-minded way

b—a.

?

x, = a+
n

yi = T(xi)
for various choices of n, and intervals [a, b]. Surprisingly, we don’t get consistent results. For example, for
n = 10, [a,b] = [—10, 10], we obtain
P(z) = (0.0)2'04 (0.0)2° + (2.0)z® + (0.0)z" + (0.0)=° — (10.0)z"
+(0.0)z* + (0.0)2> + (0.0)2? + (6.0 x 10%)x + (1.0 x 10")

17. ALGORITHMS FOR POLYNOMIAL INTERPOLATION 5

On the other hand, taking n = 10, [a, b] = [—0.005, 0.005], we obtain
P(z) = —(2.8x10%)2' + (=1.4 x 10%)2® 4 (827)2® + (41.3)2" — (7.52)2° — (10.0)2°
+(2.3 x 107H2* + (1.1 x 107%) 2% + (1.6 x 107%)2? — (20.0)x — (50.0)

Of course, such discrepancies can be traced to the floating point errors in the numerical algorithm. The
way to get around such inconsistencies is to take a three step approach.

e Carry out an interpolation in a region [a, b] where the data is changing very rapidly to get a handle
on the higher degree terms of P(z).

e Carry out an interpolation in a region [a, b] where the rate at which data is changing rather moderately
to get a handle on the lower degree terms of P(z).

e Look for a region where the high degree terms and the low degree terms have about the same influence
to get a final interpolation for P(z).

Note, however, that the test regions described above need not be near the origin, nor can there sizes be
predicted a priori. Consider, for example, what might be appropriate regions for interpolating the following
polynomial

T(x) =107° | (& — 500)° — z 4 500

