
LECTURE 16

Errors in Polynomial Interpolation

As with any approximate method, the utility of polynomial interpolation can not be stretched too far. In

this lecture we shall quantify the errors that can occur in polynomial interpolation and develop techniques

to minimize such errors.

We shall begin with an easy theorem.

Theorem 16.1. Let f be a function in Cn+1[a, b], and let P be a polynomial of degree ≤ n that interpolates

the function f at n + 1 distinct points x0, x1, . . . , xn ∈ [a, b]. Then to each x ∈ [a, b] there exists a point

ξx ∈ [a, b] such that

f(x)− p(x) =
1

(n+ 1)!
f (n+1) (ξx)

n∏

i=0

(x− xi)

Remark 16.2. Although this formula for the error is somewhat reminiscent of the error term associated
with an nth order Taylor expansion, this theorem has little to do with Taylor expansions.

Proof. If x = xi, one of the nodes of the interpolation, then the statement is certainly true since both sides
vanish identically. Suppose now that x �= xi, i = 0,1, . . . , n. Put

w(t) =
n∏

i=0

(t− xi)

φx(t) = f(t)− P (t) −
f(x)− P (x)

w(x)
w(t)

Then φx(t) ∈ Cn+1[a, b], and φx(t) vanishes at n + 2 distinct points: i.e., when t = x0, x1, . . . , xn, or x.
Now from Calculus I, we have Rolle’s Theorem which states that if a differentiable function f(x) has n

distinct zeros, then its derivative must have at least n− 1 zeros (these being the points where the graph of
the function f(x) turns around to re-cross the x-axis). Hence, φ′

x
(t) has at least n+ 1 distinct zeros, φ′′

x
(t)

has at least n distinct zeros, and so on until we can conclude that φ
(n+1)
x (t) has at least one distinct zero in

[a, b]; call it ξx. Now

φ(n+1)
x

(t) =
d(n+1

dt(n+1)

(
f(t) −P (t)−

f(x)− P (x)

w(x)
w(t)

)

= f(n+1)(t)− P (n+1)(t)−

(
f(x) −P (x)

w(x)

)
d(n+1

dt(n+1)
(w(t))

= f(n+1)(t)− P (n+1)(t)−

(
f(x) −P (x)

w(x)

)
d(n+1

dt(n+1)
((t− x0) (t− x1) · · · (t− xn)

= f(n+1)(t)− P (n+1)(t)−

(
f(x) −P (x)

w(x)

)
(n+ 1)!

Hence,

0 = φ(n+1)
x

(ξx) = f (n+1)(ξx)− P (n+1)(ξx)−

(
f(x)− P (x)

w(x)

)
(n+1)!

1
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Now, because P (x) is a polynomial of degree n, P (n+1)(x) = 0. Hence we have

0 = f (n+1)(ξx) −

(
f(x) −P (x)

w(x)

)
(n+ 1)!

or

f(x)− P (x) =
1

(n+1)!
f (n+1)(ξx)w(x) =

1

(n+ 1)!
f (n+1) (ξx)

n∏
i=0

(x− xi) .

Example 16.3. If P (x) is the polynomial that interpolates the function f(x) = sin(x) at 10 points on the
interval [0, 1], what is the greatest possible error?

• In this example, we have n + 1 = 10 and

f (n+1)(x) = f (10)(x) = − sin(x)

so the largest possible error would be the maximal value of
∣∣∣∣∣

1

10!
f (10) (ξx)

n∏

i=0

(x− xi)

∣∣∣∣∣ ,

for x,x0, x1, . . . , xn, ξx ∈ [0,1]. Clearly, on the interval [0, 1]

max |x− xi| = 1

max
∣∣∣f(n+1) (ξx)

∣∣∣ = max |− sin(ξx)| = 1

so the maximal error would be
1

10!
(1)(1)n+1 ≈ 2.8× 10−7

1. Chebyshev Polynomials and the Minimalization of Error

The theorem in the preceding system not only tells us how large the error could be when a given function
is replaced by an interpolating polynomial; it also gives us a clue as to how we might arrnge things to make
the error as small as possible.

To see this, let me write down again the expression for the error term:

E(x) ≡ f(x) −P (x) =
1

(n+ 1)!
f (n+1) (ξx)

n∏

i=0

(x− xi) , for some ξx ∈ [a, b]

Now we don’t even know what ξx is except that it’s some point in the interval [a, b] that depends on x; so
there’s not much we can do with the term f (n+1)(ξx) (particularly, because, in physical applications, we
don’t even know what f is). However, we can try to make the term

n∏

i=0

(x− xi)

as small as possible by picking a suitable choice of nodes {xi}.

Now one simple choice for the xi would be to set

∆x =
a+ b

n

xi = a+ i(∆x)

However, this is a case where the simplest choice of the xi turns out not to be the best choice. We can see
this with a simple example. Consider the case where a = −1, b = 1, and

xi = −1 + (0.5)i , i = 0, 1, 2,3,4
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Then if we set

w(x) ≡
n∏

i=0

(x− xi) = (x− 1)(x− 0.5)(x− 0)(x− 0.5)(x− 1)

and plot it

we find that has a maximum value of about 0.11.

Suppose instead we, for some strange reason, choose the points

x0 = −0.9510565160

x1 = −0.5877852520

x2 = 0.0

x3 = 0.5877852520

x4 = 0.9510565160

and plot

w1(x) = (x+0.9510565160)(x+ 0.5877852520)(x− 0)(x− 0.5877852520)(x− 0.9510565160)

We then find
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which has a maximum value of about 0.06, which is about half the value that we obtained for the simpler
choice of points xi.

Thus, by choosing a special set of points xi it is possible to reduce the contribution of the factor
n∏

i=0

(x− xi)

to the error term, and thus minimize the overall error of the interpolation polynomial.

So now the question becomes: how to choose a good set of points to sample data, so that a

polynomial interpolation is as accurate as possible? This is where Chebyshev polynomials will come
into play.

1.1. Chebyshev Polynomials. The Chebyshev polynomials are defined recursively, via the formula

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x) , n = 1, 2,3,4, . . .

The first six Chebyshev polynomials are thus

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

...

Note that the leading term of the Chebyshev polynomial T
n
(x) is 2n−1xn.

Theorem 16.4. For x ∈ [−1,1] we have

Tn(x) = cos
(
n cos−1(x)

)

This theorem is proved by showing that f
n
(x) ≡ cos(n cos−1(x)), then

f0(x) = 1

f1(x) = x

and then using the trig identity

cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

to demonstrate that

fn+1(x) = 2xfn(x) − fn−1(x)

Hence, fn(x) satisfies the defining properties of the Chebyshev polynomials.

Corollary 16.5. We have

|Tn(x)| ≤ 1 , x ∈ [−1,1]

Tn

(
cos

(
jπ

n

))
= (−1)

j
, j = 0, . . . , n

Tn

(
cos

(
2j − 1

2n
π

))
= 0 , j = 1, . . . , n
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First, however we shall give a negative result.

Definition 16.6. A polynomial P of degree n is called monic if the coefficient xn is 1.

Note that expressions of the form

w(x) =
n∏

i=0

(x− xi)

are monic polynomials, as are the polynomials obtained from the Chebyshev polynomials by dividing through
by the leading coefficient.

Qn(x) =
1

2n−1
Tn(x)

Our first application of Chebyshev polynomials will be to prove a lower bound for maximum value of a
monic polynomial on the interval [−1, 1].

Theorem 16.7. If P is a monic polynomial of degree n, then

‖P (x)‖∞ ≡ max
−1≤x≤1

|P (x)| ≥ 21−n

Proof. Suppose that P (x) is a monic polynomial of degree n and that

|P (x)| < 21−n , ∀ x ∈ [−1,1]

Set

Qn(x) = 21−nTn(x)

xi = cos

(
iπ

n

)
, i = 0, 1, . . . , n

Then by construction Qn(x) is a monic polynomial of degree n, and we’ll have

(−1)iQn(xi) = (−1)i21−nTn

(
cos

(
iπ

n

))
= 21−n(−1)i(−1)i = 21−n

Since P (x) and Qn(x) both have leading coefficient 1, their difference Qn(x) − P (x) will be a polynomial
of degree ≤ n− 1. On the other hand,

(−1)iP (xi) ≤ |P (xi)| < 21−n = (−1)iQn(xi) , i = 0, 1, 2, . . . , n

Hence,

(−1)i [Qn(xi) −P (xi)] > 0 , i = 0,1, 2, . . . , n

Thus, the function Qn(x) − Pn(x) must oscillate in signs at least n + 1 times over the interval [−1,1].
But this is not possible since Qn(x) − P (x) is a polynomial of degree at most n − 1. Hence, we have a
contradiction if |P (x)| < 21−n, ∀ x ∈ [−1, 1]. Thus, the opposite inequality must hold.

Lemma 16.8. If Qn(x) is the monic polynomial defined by

Q
n
(x) = 21−nT

n
(x)

then the maximal value of |Q
n
(x)| on the interval [−1, 1] is 2−1−n.

Proof. This is easy since on the interval [−1,1]

Qn(x) = 21−nTn(x) = 21−n cos
(
n cos−1(x)

)

and |cos(θ)| ≤ cos(0) = 1 for all θ.
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Lemma 16.9. Let

xi = cos

(
2i+ 1

2n +2
π

)
, i = 1, . . . , n

Then

(x− x1) · · · (x− xn) = Qn(x) ≡ 21−nTn(x)(16.1)

Proof. This follows from the Fundamental Theorem of Algebra. By construction each of the xi is a distinct
root of the monic polynomial Qn(x), which is of degree n. The Fundamental Theorem of Algebra tells us
that Qn(x) must therefore factorize asQn(x) = (x− x1) · · · (x− xn).

We now have

Theorem 16.10. If the nodes xi are chosen as the roots of the Chebyshev polynomial Tn+1(x)

xi = cos

(
2i +1

2n+2
π

)
, i = 0,1, . . . , n

then the error term for polynomial interpolation using the nodes xi is

E(x) = |f(x)− P (x)| ≤
1

2n(n+ 1)!
max
−1≤t≤1

∣
∣
∣f

(n+1)(t)
∣
∣
∣

Moreover, this is the best upper bound we can achieve by varying the choice of the xi.

1.2. Picking Optimal Nodes on More General Intervals. The results of the preceding section
can be summarized as follows: if we want a polynomial interpolating a function f at n+ 1 points xi in the
interval [−1, 1] to be as accurate as possible, then we should choose the data points xi so that they are the
zeros of the Chebyshev polynomial Tn+1(x).

Put more practically: suppose we have an experiment that measures a quantity Q that depends on a
parameter x ∈ [−1,1]. If we are to find the polynomial P (x) of degree n that most accurately represents
the actual function Q(x), by interpolating the data taken at n+ 1 points xi, then we should choose the xi
so that they are the zeros of the Chebyshev polynomial Tn+1(x).

What do we do if an experimental parameter x is allowed to range through some other intevarl [a, b] �=
[−1,1]?

The answer is quite easy. To find an optimal set of n + 1 data points xi in an interval [a, b] we simply
rescale the n + 1 zeros of Tn+1(x) to points in [a, b]. More precisely, let s be the linear map that maps a
point x ∈ [−1,1] to a point s(x) ∈ [a, b], such that s(−1) = a and s (1) = b. These properties actually fix s

uniquely,

s(x) = a+
(b− a)

2
(x+ 1) =

b+ a

2
+

b− a

2
x

The optimal set of n + 1 data points xi for interpolating a function Q(x) on the interval [a, b] will then be
the image under s of the n+ 1 zeros of Tn+1(x):

xi =
(b+ a)

2
+

b− a

2
cos

(
2i +1

2n+2
π

)
, i = 0, . . . , n


