
LECTURE 15

Interpolating Functions

In the next series of lectures we will discuss methods for �nding functions that best �t a given set of data.
We shall call such functions interpolating functions, and we shall consider several di�erent methods for
�nding such functions. We shall begin this discussion with the problem of interpolating data by means of
polynomial functions.

1. Polynomial Interpolation

Consider the following problem:

Problem 15.1. Given a table of n+ 1 distinct data points (xi; yi); i = 0; : : : ; n , �nd a polynomial of P of
lowest degree for which

P (xi) = yi 8 i(15.1)

That this problem has a solution is fairly easy to see. For if we set

P (x) = anx
n + an�1x

n�1 + � � �+ a1x+ a0

then, so long as the xi are all distinct, equations (15.1) will constitute a system of n+1 linearly independent
equations

(x0)
n
an + (x0)

n�1
an�1 + � � �+ x0a1 + a0 = y0(15.2)

(x1)
n
an + (x1)

n�1
an�1 + � � �+ x1a1 + a0 = y1

...

(xn)
n
an + (xn)

n�1
an�1 + � � �+ xna1 + a0 = yn

for n + 1 unknowns a0; : : : ; an. (That these equations are linearly independent may not be immediately
obvious; but it follows from the fact that the monomials xi, i = 0; : : : ; n are linearly independent functions.)
We can thus expect a unique solution of degree n.

The formal linear algebraic argument for the existence of solutions is, however, not really the best way to
�nding a solution. For, it takes on the order of n3 operations to solve a linear system such as (15.1) on a
computer, if we had a million or so data points to �t, we would need to carry out at least 1018 operations
to calculate a solution. While such a calculation might actually be feasible on modern hardware, there are
much better ways to procede.

2. The Newtonian Form of the Interpolation Polynomial

The following algorithm allows one to build up an interpolating polynomial much more quickly. Let

P0(x) = y0

1
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This function clearly satis�es P0(x0) = y0, but it won't satisfy P0(xi) = yi unless yi = y0. The next step
is to write down a function P1(x) that satis�es at least P1(x0) = y0 and P1(x1) = y1. This can be had by
simply adding a term to P0

P1(x) = y0 + c1(x� x0)

and choosing c so that

P1(x1) = y1 ) c1 =
y1 � y0

x1 � x0

Now we have a polynomial function that at least agrees with the data at two points. To create a function
that is correct for the �rst three data points we set

P2(x) = P1(x) + c2 (x� x0) (x� x1)

and choose c so that

y2 = P2(x2) ) c2 =
y2 � P1(x2)

(x2 � x0) (x2 � x1)

Note that the reason why this procedure words is that we have a function P1(x) that is already correct at
the �rst two points and we are adding to it a function that makes no contribution to the values at x0 and
x1 but which can be adjusted to correct value y2 at x2.

Now suppose we have carried out this procedure to construct a (degree k) polynomial Pk(x) that replicates
the �rst k data points. To obtain a polynomial function that replicates all the data points up to (xk; yk)
we set

Pk(x) = Pk�1(x) + ck (x� x0) (x� x1) � � � (x� xk�1)

where ck is chosen so that Pk (xk) = yk

) ck =
yk � Pk�1(xk)

(xk � x0) (xk � x1) � � � (xk � xk�1)

Clearly, so long as the points xi, i = 0; : : : ; n are all distinct, there is no obstruction to this program and so
we'll be able to construct a polynomial Pn(x) of degress m � n that interpolates the data (it could happen
that some of the numbers ci = 0, that's why perhaps the degree of Pn(x) might be less than n).

Example 15.1. Find the Newton form of the interpolation polynomial for the following set of data

x0 = 0 y0 = �1
x1 = 1 y1 = �1
x2 = 2 y2 = 1
x3 = 3 y3 = 11

� Set

P0(x) = y0 = �1

Then

c1 =
y1 � P0(x)

(x1 � x0)
=

�1� (�1)

1� 0
= 0

) P1(x) = P0(x) + c1(x� x0) = �1 + 0 = �1

c2 =
y2 � P1(x)

(x2 � x1)(x2 � x0)
=

1� (�1)

(2� 1)(2� 0)
= 1

) P2(x) = P1(x) + c2(x� x0)(x� x1) = �1 + (x� 1)x

c3 =
y3 � P2(x)

(x3 � x2)(x3 � x1)(x3 � x0)
=

11� 5

(3� 2)(3� 1)(3� 0)
= 1

) P3(x) = P2(x) + c3(x� x0)(x � x1)(x � x2) = �1 + (x� 1)x+ (x� 2)(x� 1)x
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So the Newton form of the interpolation polynomial is

P (x) = P3(x) = �1 + (x� 1)x+ (x� 2)(x� 1)x

Noting that

�1 + (x� 1)x+ (x� 2)(x� 1)x = x3 � 2x2 + x� 1

one can easily verify that P (x) correctly interpolates the given data.

It should be also fairly obvious as to how one might write a program that would calculate, in an iterative
fashion, all the coe�cients ck, all the intermediary polynomials Pk(x), and �nally the polynomial

Pn(x) = Pn�1(x) + cn(x � x0)(x � x1) � � � (x� xn�1)

= c0 + c1(x� x0) + c2 (x� x0) (x� x1) + � � �+ cn(x� x0)(x� x1) � � � (x� xn�1)

that interpolates all the data points. However, we shall not do so; because it turns out that this algorithm,
though useful in seeing the why and how of polynomial interpolation, is not all that e�cient in producing
the �nal interpolating polynomial. Instead, we shall view the algorithm above as a constructive proof of
the following theorem.

Theorem 15.2. Let x0; x1; : : : ; xn be distinct real numbers and let y0; y1; : : : ; yn be a corresponding (not
necessarily distinct) set of values. Then there is a unique polynomial Pn(x) of degree at most n such that

Pn (xi) = yi ; i = 0; 1; : : : ; n

Remark 15.3. Actually, we have not yet proved the uniqueness of Pn(x). As this will be important latter
on, I'll give the argument here. Suppose Q(x) and P (x) were two polynomials of degreee at most n that
interpolated the same set of data points (x0; y0) ; (x1; y1) ; : : : ; (xn; yn). Then the polynomial P (x)� Q(x)
would be of degree less than or equal to n and would have the property that

P (xi)� Q (xi) = yi � yi = 0 ; i = 0; 1; : : : ; n

But a non-zero polynomial of degree n can have at most n distinct zeros. Therefore, we must have
P (x)�Q(x) = 0, hence P (x) = Q(x).

Henceforth, we shall refer to the presentation

P (x) = c0 + c1(x� x0) + c2 (x� x0) (x� x1) + � � �+ cn(x� x0)(x� x1) � � � (x� xn�1)

=
nX

i=0

ci

0
@i�1Y

j=0

(x� xj)

1
A

of the interpolating polynomial as the Newton form of the interpolation polynomial.

3. The Lagrange Form of the Interpolation Polynomial

We shall now present another way writing down the polynomial that interpolates a given set of data. The
basis for this presentation of the interpolation polynomial lies in the fact that the �nal coe�cients of each
power of x in P (x) depend linearly on the data points yi. To see this note that the equations (15.2) for the
coe�cients ai can be written0

BBB@
(x0)

n (x0)
n�1 � � � 1

(x1)
n (x1)

n�1 � � � 1
...

(xn)
n

(xn)
n�1

1

1
CCCA

0
BBB@

an
an�1
...
a0

1
CCCA =

0
BBB@

y0
y1
...
yn

1
CCCA

If we think of this as a matrix equation of the form Xa = y, then its solution can be represented formally
as a = X�1y and so each coe�cient ai would depend linearly on the values yj, j = 0; : : : ; n. We can then
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collect all the terms in the interpolation polynomial that are proportional to each of the yi to obtain an
expression of the form

P (x) = y0`0(x) + y1`1(x) + � � �+ yn`n(x)

Now the polynomials `i(x) depend only on the variables data points xi and not at all on their values yi.
Therefore, by looking at special sets of potential data, we can �gure out what they must be. For example,
suppose we �x i and demand

yj =

�
1 if i = j

0 if i 6= j
(15.3)

Then the interpolating polynomial for this set of data would look like

P (x) =
nX

j=0

yj`j(x) = li(x)

and so we could conclude that, since this polynomial interpolates the data (15.3)

0 = P (xj) = `i (xj) for all i 6= j

which tells us that `i(x) has n distinct roots xj, i 2 f0; 1; : : : ; n j i 6= jg. Since the degree of `i(x) is at most
n, and because the trivial solution `i(x) is not allowed (otherwise P (xi) 6= 1), and because the interpolating
polynomial must be unique we can conclude that

li(x) =
Y
j 6=i

(x� xj)

(xi � xj)

simply because it has the property that it interpolates the data (15.3).

Having identi�ed the cardinal functions `i(x), we can now write

P (x) =
nX

i=0

yi`i(x) =
nX
i=0

yi

0
@Y

j 6=i

(x� xj)

(xi � xj)

1
A

This presentation of the interpolation polynomial is known as the Lagrange form of the interpolation

polynomial.

Example 15.4. Find the Lagrange form of the interpolation polynomial for the following set of data

x0 = 0 y0 = �1
x1 = 1 y1 = �1
x2 = 2 y2 = 1
x3 = 3 y3 = 11



3. THE LAGRANGE FORM OF THE INTERPOLATION POLYNOMIAL 5

� Writing down the Lagrange form of the interpolation is pretty straight-forward.

P (x) =
nX

i=0

yi

0
@ nY

j 6=i

(x � xj)

(xi � xj)

1
A

= y0
(x� x1) (x� x2) (x� x3)

(x0 � x1) (x0 � x2) (x0 � x3)

+y1
(x� x0) (x� x2) (x� x3)

(x1 � x0) (x1 � x2) (x1 � x3)

+y2
(x� x0) (x� x1) (x� x3)

(x2 � x0) (x2 � x1) (x2 � x3)

+y3
(x� x0) (x� x1) (x� x2)

(x3 � x0) (x3 � x1) (x3 � x2)

= �
(x � 1)(x� 2)(x� 3)

(�1)(�2)(�3)
�

x(x� 2)(x� 3)

(1)(�1)(�2)

+
x(x� 1)(x� 3)

(2)(1)(�1)
+ (11)

x(x� 1)(x� 2)

(3)(2)(1)

The �nal expression is the Lagrange form of the interpolation polynomial. While tedious, it is
nevertheless straightforward to verify that

P (x) = �
(x� 1)(x� 2)(x� 3)

(�1)(�2)(�3)
�

x(x� 2)(x� 3)

(1)(�1)(�2)
+

x(x� 1)(x� 3)

(2)(1)(�1)
+ (11)

x(x� 1)(x� 2)

(3)(2)(1)

= x3 � 2x2 + x = 1

and so we recover the same interpolation polynomial as in the �rst example.


