
LECTURE 11

Gaussian Elimination

The LU factorization technique discussed in the preceding lecture seems quite di�erent from the Gaussian
elimination technique for solving systems of linear equations that is taught in linear algebra courses. The
aim of this lecture is to show the connection between the two techniques and then develop a computer
algorithm for carrying out Gaussian eliminiation.

So let me �rst remind you how Gaussian elimination works. Consider the following system of equations

x1 + x2 + x3 = 6

2x1 � 2x2 + x3 = 1

x1 + x2 � x3 = 0

The matrix representation of this system is

Ax = b)

0
@

1 1 1
2 �2 1
1 1 �1

1
A
0
@

x1
x2
x3

1
A =

0
@

6
1
0

1
A

Now there are several operations that one can perform on a system of equations, without changing its
solution.

1. We can replace any equation by a non-zero constant times the original equation.
2. We can replace any equation by its sum with another equation.
3. We can carry out the above operations any number of times.

In the matrix language these operations equations translate to operations on the augmented matrix

[A] [b] =

2
4

1 1 1
2 �2 1
1 1 �1

3
5
2
4

6
1
0

3
5

Thus, for example we can add -2 times the �rst row to the second row and �1 times the �rst row to the
third row to obtain the following equivalent system

2
4

1 1 1
0 �4 �1
0 0 �2

3
5
2
4

6
�11
�6

3
5

which, being an upper triangular system, is readily solved.

Example 11.1. Construct a Maple program for solving
0
@

1 1 1
2 �2 1
1 1 �1

1
A
0
@

x1
x2
x3

1
A =

0
@

6
1
0

1
A

using Gaussian elimination.

The following code will do the trick.

1

11. GAUSSIAN ELIMINATION 2

n := 3:

n1 := n+1:

A := array(1..n,1..n,[[1,1,1], [2,-2,1],[1,1,-1]]):

b := array(1..n,[6,1,0]):

print(`A is`, A);

print(`b is`, b);

x := array(1..n):

U := array(1..n,1..n):

c := array(1..n):

define augmented matrix

AugA := array(1..n,1..n1):

for i from 1 to n do

for j from 1 to n do

AugA[i,j] := A[i,j]:

od:

AugA[i,n1] := b[i]:

od:

carry out Gaussian eliminiation

for k from 1 to n-1 do

for j from k+1 to n do

m := AugA[j,k]/AugA[k,k]:

for i from k to n1 do

AugA[j,i] := AugA[j,i] - m*AugA[k,i]:

od:

od:

od:

print(`AugA is`, AugA):

we interprete AugA as representing an upper triangular

system Ux=c and solve for x using back substitution

identify the upper triangular matrix

for i from 1 to n do

for j from 1 to n do

U[i,j] := AugA[i,j]:

od:

od:

identify the column vector c

for i from 1 to n do

c[i] := AugA[i,n1]:

od:

carry out the back substitution

for i from 0 to n-1 do

x[n-i] := (c[n-i] - add(U[n-i,n-j]*x[n-j],j=0..i-1))/U[n-i,n-i]:

od:

1. CONNECTION WITH LU FACTORIZATION 3

print(`x is`, x);

Note: In this example, I introduced the array variables AugA, U, and c only for the purpose of conceptual
clarity. A more e�cient program would only require using the variables A, b, and x.

1. Connection with LU Factorization

To make the connection with LU factorization, let's carry out another example of Gaussian elmination.
Consider the following matrix. (Note: the operations below are applied only to the unaugmented matrix A
of a linear system Ax = b.)

A =

2
664

6 �2 2 4
12 �3 6 11
�12 5 1 �3
6 1 20 23

3
775

In the �rst stage of Gaussian elimination we leave the �rst row unchanged, muliply the �rst row by 2 and
add it to the second row, multiply the �rst row by �2 and add it to the third row, and multiply the �rst
row by 1 and add it to the fourth row; producing

2
664

6 �2 2 4
0 1 2 3
0 1 5 5
0 3 18 19

3
775

Let's associate with this stage a column vector

c1 =

2
664

1
�2
2
�1

3
775

Here the �rst non-zero component 1 indicates that we left the �rst row unchanged, the second component
indicates that we multiplied the �rst row by -2 before subtracting it from the second row, the third compo-
nent indicates that we multiplied the �rst row by 2 and subtracting it from the third row, and the fourth
component indicates that we multiplied the �rst row by 1 and subtracted it from the fourth row.

In the next stage we ignore row 1, leave row 2 unchanged, and add multiples of row 2 to rows 3 and 4. This
stage can thus be characterized by the following column vector

c2 =

2
664

0
1
1
3

3
775

and the subsequent matrix will be

2
664

6 �2 2 4
0 1 2 3
0 0 2 3
0 0 12 10

3
775

1. CONNECTION WITH LU FACTORIZATION 4

In the next stage we ignore the �rst two rows, leave row 3 unchanged, and multiply row 3 by 2

9
and add it

to the last row. The corresponding column vector will be

c3 =

2
664

0
0
1
4

3
775

and the resulting matrix will be 2
664

6 �2 2 4
0 1 2 3
0 0 3 2
0 0 0 2

3
775

Let us write down one last column vector to indicate that there's nothing left to do

c4 =

2
664

0
0
0
1

3
775

Now set U denote the upper triangular matrix that represents the result of the �nal stage of Gaussian
elimination

U =

0
BB@

6 �2 2 4
0 1 2 3
0 0 3 2
0 0 0 2

1
CCA

and let L the lower triangular matrix that's formed by adjoining the column vectors c1; c2; c3 and c4:

L =

0
BB@

1 0 0 0
2 1 0 0
�2 1 1 0
1 3 4 1

1
CCA

Then, surprise, surprise, these two matrices provide an LU factorization of the original matrix A.

1.1. New and Improved Notation. In the preceding example, we saw that we could simultaneously

identify an LU factorization of a matrix A if we conscientiously kept track of the multipliers of the pivot
rows. We did this by associating a column vector to each stage of the Gaussian elimination procedure.
What I now want to describe is a notational hat-trick that allows us to work only with the matrix A. The
idea is this we keep track of the multipliers by placing the multiplier for a given row, say the ith row for the
kth stage of Gaussian elimination in the ki slot of the matrix. Of course, these new entries are not really
components of the matrix A, we can put them there though without losing information because after the
kth stage of Gaussian elimination, the matrix A will always have a zero in the ki slot. To make the special
interpretation of these entries manifest we'll underline them. The example above would then work out as
follows 0

BB@
6 �2 2 4
12 �3 6 11
�12 5 1 �3
6 1 20 23

1
CCA

0
BB@

6 �2 2 4
2 1 2 3
�2 1 5 5
1 3 18 19

1
CCA

1. CONNECTION WITH LU FACTORIZATION 5

0
BB@

6 �2 2 4
2 1 2 3
�2 1 3 2
1 3 12 10

1
CCA

0
BB@

6 �2 2 4
2 1 2 3
�2 1 3 2
1 3 4 2

1
CCA

Now the LU factorization of A can be obtained by pulling o� the underlined entries into a unit lower
triangular matrix L and interpreting the entries that remain as the components of a upper triangular
matrix U.

L =

0
BB@

1 0 0 0
2 1 0 0
�2 1 1 0
1 3 4 1

1
CCA ; U =

0
BB@

6 �2 2 4
0 1 2 3
0 0 3 2
0 0 0 2

1
CCA

Thus, another method of solution for a linear system of the formAx = b would be to carry out the technique
above to �nd an LU factorization of the (unaugmented) matrix A and then solve Lz = b for z and �nally
Ux = z.

Example 11.2. Write down the Maple code that automates the preceding example; i.e., write down the
Maple code that carrys out Gaussian elimination and an LU factorization simultaneously.

Here's the code.

n := 4;

A := array(1..n,1..n,[[6,-2,2,4],[12,-3,6,11], [-12,5,1,-3],[6,1,20,23]]);

L := array(1..n,1..n);

U := array(1..n,1..n);

LU := array(1..n,1..n);

print(`A is`, A);

carry out the Gaussian elimination

for k from 1 to n-1 do

for i from k+1 to n do

calculate the multiplier for the ith row at the kth stage

m := A[i,k]/A[k,k];

store the multiplier

A[i,k] := m;

for j from k+1 to n do

A[i,j] := A[i,j] - m*A[k,j];

od:

od:

od:

print(`new A is`,A);

#extract L and U from the new A

for i from 1 to n do

for j from 1 to n do

1. CONNECTION WITH LU FACTORIZATION 6

if i<j then

U[i,j] := A[i,j];

L[i,j] := 0;

elif i=j then

U[i,j] := A[i,j];

L[i,j] := 1;

else

U[i,j] := 0;

L[i,j] := A[i,j];

fi;

od:

od:

print(`L is`, L);

print(`U is`, U);

verify that A = LU

for i from 1 to n do

for j from 1 to n do

LU[i,j] := add(L[i,k]*U[k,j],k=1..n);

od:

od:

print(`LU is`, LU);

