
LECTURE 10

LU Factorizations

Suppose that a matrix A has a factorization

A = LU

where L and U are respectively lower triangular and upper triangular matrices. Then the linear system

Ax = b(10.1)

can be solved quite easily. For we can rewrite (10.1) as

L (Ux) = b

But then Ux must be the solution of

Lz = b

(which we can solve explicitly for z since L is lower triangular), and so

Ux = z

(which we can solve explicitly for x since U is upper triangular).

We shall now develop an algorithm for �nding a LU factorization of a given matrix A. Not all matrices will
have LU factorizations. However, it will turn out that the lack of an LU factorization can be attributed
to the fact that the application of the algorithm given below is eventually nulli�ed by an illegal operation;
namely a division by 0. In other words, if a matrix has an LU factorization our algorithm will �nd it. If
not, our algorithm will instead churn out a divide by zero error.

To develop this algorithm we start with the matrix multiplication formula

aij =
nX

k=1

likukj(10.2)

Now the components of L, being lower triangular, satisfy

lik = 0 if k > i

and the components of U, being upper triangular, satisfy

ukj = 0 if k > j

Therefore the sum (10.2) can be written

aij =

min(i;j)X
k=1

likukj(10.3)

Now before we actually try soving equations (10.3) for the components lik of L and the components ukj
of U, let's �rst observe that the matrix A has n2 components aij; so we have a total of n2 equations in
(10.3). Now the number of (possibly) non-zero components of the matrix L is determined by observing that

1

10. LU FACTORIZATIONS 2

it has the same number, n, of diagonal components as matrix A, but only half the number of o� diagonal
components as A. Therefore, the number of nontrivial entries of L is

n+
1

2

�
n2 � n

�
=

n(n+ 1)

2

Similarly, the upper triangular matrix U has 1
2n(n+ 1) components. Thus the total number of unknowns

in the system (10.3) is

n(n+ 1)

2
+

n(n+ 1)

2
= n2 + n

We thus have n more unknowns than we have equations. The general solution of (10.3) will thus contain
n free parameters. We can remove these extra degrees of freedom, without destroying the possibility of
�nding a solution, by imposing n additional conditions on the components of L and/or U. We shall do so
in a manner that simpli�es the subsequent solution of (10.3); namely we shall require

lii = 1 ; i = 1; 2; : : : ; n(10.4)

In other words, we force the lower diagonal matrix L to have only 1's along its diagonal. (The text refers
to such a matrix as unit lower triangular.)

Let's now separate the n2 equations (10.3) into three subsets corresponding to the cases when i = j, i < j,
and i > j.

aii =
iX

k=1

likuki ; i = 1; 2; : : : ; n(10.5)

aij =
iX

s=1

likukj ; i < j(10.6)

aij =

jX
k=1

likukj ; j < i(10.7)

Setting i = 1 in (10.4) and (10.5) we have

a11 = l11u11 = u11) u11 = a11(10.8)

Setting i = 1 in (10.6) yields

a1j =
1X

k=1

likukj = l11u1j = u1j) u1j = a1j ; j = 2; 3; : : : ; n(10.9)

Note that equations (10.8) and (10.9) completely determine the �rst row of U.

Setting j = 1 in (10.7) we obtain

ai1 =
1X

k=1

likuk1 = li1u11) li1 =
1

u11
ai1 =

ai1
a11

; i = 2; 3; : : : ; n(10.10)

Since l11 = 1 by hypothesis, equations (10.10) �x all the elements of the �rst column of the matrix L.

Let's now set i = 2 in (10.5). This yields

a22 =
2X

k=1

l2kuk2 = l21u12 + l11u22 = l21u12 + u22) u22 = a22 � l21u12(10.11)

10. LU FACTORIZATIONS 3

Since l21 (an element of the �rst column of L) and u12 (an element of the �rst row of U) have already been
determined (10.11) determines u22. Setting i = 2 in (10.6) yields

a2j =
2X

k=1

l2kukj = l21u1j + l22u2j = l21u1j + u2j) u2j = a2j � l21u1j ; j = 3; 4; : : : ; n(10.12)

Since u21 � 0, equations (10.11) and (10.12) completely �x the second row of U.

Now set j = 2 in (10.7). This yields

ai2 =
2X

k=1

likuk2 = li1u12 + li2u22) li2 =
1

u22
(ai2 � li1u12) ; i = 3; 4; : : : ; n(10.13)

Since l12 � 0, l22 � 1, and because u22, li1, and u12 have all been previously determined, these relations
su�ce to �x the second column of L.

Let me now review the steps taken so far so that we can bring to life the general algorithm.

1. We set all the diagonal elements of L equal to 1.
2. We determined u11 from equation (10.5) with i = 1:
3. We determined the �rst row ofU from the preceding results and the equations (10.6) with i = 1 and

j = 2; 3; : : : ; n.
4. We determined the �rst column of L from the preceding results and the equations (10.7) with j = 1.

and i = 2; 3; : : : ; n.
5. We determined u22 from the preceding results and equation (10.5) with i = 2:
6. We determined the second row of U from the preceding results and the equations (10.6) with i = 2.

and j = 3; 4; : : : ; n.
7. We determined the second column of L from the preceding results and the equations (10.7) with

j = 2 and i = 3; 4; : : : ; n.

The general algorithm can now be stated.

For each k from 1 to n

1. Set lik = 0 for i = 1; 2; : : : ; k� 1 (so that L is lower triangular).
2. Set uki = 0 for i = 1; 2; : : : ; k � 1 (so that U is upper triangular):
3. Set lkk = 1.
4. Determine ukk from the equation (10.5)

akk =
kX

s=1

lksusk) ukk =
1

lkk

akk �

k�1X
s=1

lksusk

!

Note that the expression on the far right involves only the �rst k�1 columns of L and the �rst k�1
rows of U.

5. Determine the remaining elements of the kth row of U from the equations (10.6) with i = k and
j = k + 1; k + 2; : : : ; n

akj =
kX

s=1

lksusj) ukj =
1

lkk

akj �

k�1X
s=1

lksusj

!

6. Determine the remaining elements of the kth column of L from the equations (10.7) with j = k and
i = k + 1; k+ 2; : : : ; n

aik =
kX

s=1

lisusk) lik =
1

ukk

aik �

k�1X
s=1

lisusk

!

10. LU FACTORIZATIONS 4

Example 10.1. Consider the following 3� 3 matrix:

A =

0
@ 5 6 7

10 20 23
15 50 67

1
A

Write a Maple program that carries out an LU factorization of A.

The following code works.

n := 3; # all matrices are nxn=3x3

A := array(1..n,1..n);

L := array(1..n,1..n);

U := array(1..n,1..n);

A := [[5,6,7],[10,20,23],[15,50,67]];

for k from 1 to n do # calculate kth column of L and kth row of U

for s from 1 to k-1 do

L[s,k] := 0; # so that L is lower triangular

U[k,s] := 0; # so that U is upper triangular

od;

L[k,k] := 1; # by convention

k1 := k-1;

calculate the kth element of kth row of U

U[k,k] := A[k,k] - sum(L[k,j0]*U[j0,k],j0=1..k1);

for t from k+1 to n do

calculate remaining elements in kth column of L

L[t,k] := (A[t,k] - sum(L[t,j1]*U[j1,k],j1=1..k1))/U[k,k];

calculate remaining elements in kth row of U

U[k,t] := A[k,t] - sum(L[k,j2]*U[j2,t],j2=1..k1);

od;

od;

print(L);

print(U);

