
LECTURE 7

Newton’s Method

Newton’s method is another technique for finding the zeros of an equation of the form

f(x) = 0

Suppose f is both continuous and differentiable. Then f will have a smooth graph looking (for example)
something like

In this picture we have also displayed the line

y = x0 + f ′ (x0) (x− x0)

that represents the best straight line fit to the curve y = f(x) near the point x0. (Note that the right hand
side of this equation is just the first order Taylor expansion of f about the point x0.) Since

F1(x) ≡ f (x0) + f ′ (x0) (x− x0)

is a linear function of x it is trivial to find its zero x1:

0 = f(x0) + f ′(x0) (x1 − x0) ⇒ x1 = x0 −
f (x0)

f ′(x0)

Now, in all likelyhood, x1 is not also zero for f(x); but if F1(x) is a sufficiently good approximation of f(x)
near the point x1 then its zero there should be close to a zero of f(x). Indeed, it should be closer to a zero
of f(x) then x0. We therefore improve our approximation of f(x) near its zero by looking at

F2(x) = f (x1) + f ′(x1) (x− x1)

This function has a zero at

x2 = x1 −
f (x1)

f ′(x1)
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7. NEWTON’S METHOD 2

which should be an even better approximate zero of f(x). The algorithm for finding successively better
approximations for the zeros of f(x) should now be clear.

1. Choose an initial point x0, hopefully one that is close to a zero of f(x).
2. Calculate

x1 = x0 −
f(x0)

f ′(x0)

3. Replace the value of x0 by the value of x1 and loop back to Step 2.
4. Repeat Steps 2 and 3 until either

(a) f(x0) is sufficiently close to zero
(b) x0 is sufficiently close to the actual zero
(c) a fixed number of iterations is completed.

Example 7.1. Write a Maple routine that utilizes Newton’s method to find a zero of

f(x) = x5 − 3x+1

starting with an initial point x0 = 1.

f := x -> x^5 - 3*x + 1;

f1 := x -> 5*x^4 - 3;

x0 := 1.0;

for i from 1 to 100 while ( abs(f(x0)) > 0.000001) do

x0 := x0 - f(x0)/f1(x0);

od;

x0;

f(x0);

Notice how quickly this routine achieves the desired accuracy. This is an example of an algorithm with
quadratic convergence. To see this explicitly, let r denote the actual root of f(x) = 0, let xn denote the
approximate value of r obtained by applying n iterations of the algorithm above. Then

en = xn − r

is the absolute error after n iterations. Since

en+1 = xn+1 − r

= xn −
f (xn)

f ′ (xn)
− r

= e
n
−

f(x
n
)

f ′ (xn)

=
enf

′ (xn) − f (xn)

f ′ (xn)

Now by Taylor’s Theorem

0 = f(r) = f (xn − en) = f (xn) + f ′ (xn) (−en) +
1

2
f ′′ (ξn) (−en)

2

for some ξn between r and xn. So

enf (xn)− f (xn) =
1

2
f ′′ (ξn) (en)

2

for some ξn between r and xn. Hence,

en+1 =
enf

′ (xn) − f (xn)

f ′ (x
n
)

=
1

2

f ′′ (ξn)

f ′ (x
n
)
(en)

2 ≈
1

2

f ′′ (r)

f ′ (r)
(en)

2
= C |en|
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Hence, the error terms converge quadratically to zero. We summarize this argument with the following
theorem.

Theorem 7.2. Suppose that f ∈ C2(R) and let r be a simple zero of f . Then there is a neighborhood of r

and a constant C such that if Newton’s method is started in that neighborhood, the sucessive points become

steadily closer to r and satisfy

|xn+1 − r| ≤ C |xn − r|2 .

(A simple zero of f is a point at which f(x) = 0 but f ′(x) �= 0.)


