Math 4263
Solutions to Homework Set 6

1. Show that a function f(z) = u(z) + v (z) of a complex variable z = x + iy that satisfies the Cauchy-
Riemann equations
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also has the property that both its real part u (z) and its imaginary part v (z) satisfy Laplace’s equation:
ie.,

Ugg + Uyy = 0 = Vg + Vyy

e We have
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and so
Ugg + Uyy = 0
Similarly,
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and so

Vg + Vyy =0

2. Let g (z) be any piecewise continuous function on R. Show directly from the definition, that the mapping

¢y : CF (R) — R given by
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defines a distribution.

e Let c1 f1 () + caf2 (z) be an arbitary linear combination of functions in C2° (R). We have
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and so ¢, is a linear functional on C¢2° (R). Strictly speaking, however, this is not enough to prove
that ¢, is a distribution. For a distribution is a continuous linear functional on C¢° (R). To prove
the continuity of ¢,, we must check that if {f1, f2,...} is a sequence of functions in C2° (R) that
vanish outside a common interval and converge uniformly to a function f € C2° (R) then

Tim 6, (fa) = 6, ()

In the case at hand, we thus need

lim fn x)dr = / f(z whenever {f1, f2,...} converges uniformly to f
Now unlform convergence means the following: {f,.}, oy converges uniformly to f if for every € > 0,
there exists a natural number N such that | f,, (z) — f (z)| < € for all z € R and for all n > N. Now
consider
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Since {f,,} converges uniformly to f, for any £ > 0 we can find an N such that
|fn(x) = f(zx)|<eforalln> N andall z € R

In fact, we are assuming, moreover, that the functions {f,} and f all vanish outside a certain finite
interval I. Let L be the length of that interval and let G be the maximum value of g (z) in I. Then
we have for all n > N

/_an<x>g<x>dw—/_°;f<w>g<x>dx
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Letting ¢ — 0, we see we can force

'/oofn(x) dxf/ f@)g(x)dz| —0
and so
Jim ¢ (fn) = ¢4 (f)
as required.
3. Let v be any distribution. Verify that the functional ¢’ defined by
v (0= ()
is a distribution.
e The linearity of ¢ is easily verifed:
Y (eh+ef) = —¢ ( (crfi+ szz))
= —¢ ( ah +co Zf;) by properties of differentiation

= —c0 (df 1> — o1 (dfz) by linearity properties of the distribution v
= at’ (/i) + ey (f2)

The continuity of ¢’ follows from the well-known' fact that if {f,,} is a sequence of smooth functions

that converges uniformly to f on a compact sets then {%%} converges uniformly to %. Thus,

lim f, =f wuniformly =— lim df—n = d—f uni formly
n—o0 n—oo dx dx
and so
lim ¢ (f,) = hm - <df"> = —1 (%) since 1 is a distribution and Cg—; converges uniformly to ;Z—J;

n—oo

Thus,
. . o daf
lim f,=f wuniformly =  lim ¢ (fp,) =9 e

and so v is a continuous linear functional on C2° (R), hence a distribution.

IThis is typically proved somewhere in Math 4023: Introduction to Modern Analysis.



4. Let u(x) = u (x,y) be a harmonic function on a planar domain D. Derive the representation formula

wl) = 5= [l (VInfx=xal) = (Vu () In x = 0] - S

that expresses u (Xxo) at an interior point xg as a certain integral of u (x) and its gradient over the boundary
of D.

e Consider the function

600 =In x| = o (VEZF42) = 3 nfa? + 47|

We have
o (1 2z —z2 +y?
Pre = o <§x2+y2> - (@2 + )2
a (1 2 22 — 2
Py = dy <§x2+y2> - (@2 + 12)°
Thus,
Puz + Pyy =0

and so ¢ (x) is a solution of the Laplace equation — at least everywhere it is defined. This is the
2-dimensional analogue of the fundamental solution 1/ ||x]|| to the Laplace equation in 3-dimensions.
e Now consider, for any ¢ > 0,

¢, (x):=In(||x]| +¢&) =In|r +¢| (in polar coordinates)
This is a well-defined smooth function of x for all x € R? and we have
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Now consider
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And so 1
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has the properties that
61_1210 %V g (x) = { undefined ifx=0
iVz(ba (x) =1 independent of &
R2 2

and so we are justified in setting
1
~5 V0. (%) =% (%)
and even, upon making a change of variables,

1
—5- V0. (x = x0) = 0 (x — x0)



e Now let D C R? be a closed, solid, domain in R? and let OD be its boundary. Green’s second
identity says

/ (692 — $V26) dA = / (6V — V) - m dC
D oD

Now let ¢ (x) be any solution of Laplace’s equation on D and take 9 (x) = ¢, = 5= In[|x — x,||.
We then have

/¢(x) (iV1n(|x—xo||+a)) dA:i/ 6V In (| — x| +£) — In (% — %,|| + £) V) - n dC
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Taking the limit € — 0, we get
60 = [ 0608 x-x)aA =5 [ @V In(lx—x.]) < In (Ix = x,]) Vo) - dC
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5. A Green’s function Gy (x) for the Laplace operator V2 and domain D and a point y € D, is a function
defined for all x in D such that

(i) Gy (x) posseses continuous second derivatives and V2Gy, (x) = 0; except at the point x = y.
(ii) Gy (x) =0 for all x on the boundary 9D of D.
(iii) The function X
"Il
is finite at y, has continuous second partial derivatives everywhere and is harmonic at y.
Show that such a function is unique. (You can assume such a function always exists - this is, in
fact, true.)
e Consider

Gy (x)

1
x) =Gy (x) + ——
900() y() 47r||x—y|\
with Gy (x) satisfying conditions (i), (ii), (iii) above. Evidently, ¢, (x) satifies Laplace’s equation
at all points of D including x =y, because

v? (G X +7) =04+40=0 Vx#y
W Tyl ’
and because of (iii). Moreover, ¢, (x) satisfies
1 1
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by (ii). Hence, ¢, (x) is unique because there is exactly one solution of Laplace’s equation on D
satisfying the Dirichlet boundary conditions (*). But then if ¢, (x) is unique, then

Gy (x) = 0 () =

is unique.



