
Math 4263
Solutions to Homework Set 4

1. Show that a function f (z) = u (z) + iv (z) of a complex variable z = x + iy that satisfies the Cauchy-
Riemann equations
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also has the property that both its real part u (z) and its imaginary part v (z) satisfy Laplace’s equation:
i.e.,

uxx + uyy = 0 = vxx + vyy

• We have
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and so

uxx + uyy = 0 .
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and so

vxx + vyy = 0 .

2. Let g (x) be any piecewise continuous function on R. Show directly from the definition, that the mapping
φg : C∞c (R)→ R given by

φg (f) :=

∫ ∞
−∞

f (x) g (x) dx

defines a distribution.

• Let c1f1 (x) + c2f2 (x) be an arbitary linear combination of functions in C∞c (R). We have

φg (c1f1 + c2f2) ≡
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−∞

(c1f1 (x) + c2f2 (x)) g (x) dx
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= c1φg (f1) + c2φg (f2)

and so φg is a linear functional on C∞c (R). Strictly speaking, however, this is not enough to prove
that φg is a distribution. For a distribution is a continuous linear functional on C∞c (R). To prove
the continuity of φg, we must check that if {f1, f2, . . .} is a sequence of functions in C∞c (R) that
vanish outside a common interval and converge uniformly to a function f ∈ C∞c (R) then

lim
n→∞

φg (fn) = φg (f)

In the case at hand, we thus need

lim
n→∞

∫ ∞
−∞

fn (x) g (x) dx =

∫ ∞
−∞

f (x) g (x) dx whenever {f1, f2, . . .} converges uniformly to f

Now uniform convergence means the following: {fn}n∈N converges uniformly to f if for every ε > 0,
there exists a natural number N such that |fn (x)− f (x)| < ε for all x ∈ R and for all n > N . Now
consider ∣∣∣∣∫ ∞

−∞
fn (x) g (x) dx−
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∣∣∣∣ ≤ ∫ ∞
−∞
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Since {fn} converges uniformly to f , for any ε > 0 we can find an N such that

|fn (x)− f (x)| < ε for all n > N and all x ∈ R

In fact, we are assuming, moreover, that the functions {fn} and f all vanish outside a certain finite
interval I. Let L be the length of that interval and let G be the maximum value of g (x) in I. Then
we have for all n > N∣∣∣∣∫ ∞

−∞
fn (x) g (x) dx−

∫ ∞
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f (x) g (x) dx
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|fn (x)− f (x)| |g (x)| dx

=

∫
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|fn (x)− f (x)| |g (x)| dx

≤ LGε

= (some finite constant)× ε

Letting ε→ 0, we see we can force∣∣∣∣∫ ∞
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f (x) g (x) dx

∣∣∣∣→ 0

and so

lim
n→∞

φg (fn) = φg (f)

as required.

3. Let ψ be any distribution. Verify that the functional ψ′ defined by

ψ′ (f) := −ψ
(
df

dx

)
is a distribution.

• The linearity of ψ′ is easily verifed:

ψ′ (c1f1 + c2f) ≡ −ψ
(
d

dx
(c1f1 + c2f2)

)
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by properties of differentiation
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= c1ψ
′ (f1) + c2ψ
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The continuity of ψ′ follows from the well-known1 fact that if {fn} is a sequence of smooth functions

that converges uniformly to f on a compact sets then
{
dfn
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}
converges uniformly to df

dx . Thus,

lim
n→∞
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and so
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Thus,
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and so ψ′ is a continuous linear functional on C∞c (R), hence a distribution.

1This is typically proved somewhere in Math 4023: Introduction to Modern Analysis.



3

4. Let u (x) = u (x, y) be a harmonic function on a planar domain D. Derive the representation formula

u (x0) =
1

2π

∫
∂D

[u (x) (∇ ln ‖x− x0‖)− (∇u (x)) ln ‖x− x0‖] · n dS

that expresses u (x0) at an interior point x0 as a certain integral of u (x) and its gradient over the boundary
of D.

• Consider the function

φ (x) = ln ‖x‖ = ln
(√

x2 + y2
)

=
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Thus,

φxx + φyy = 0

and so φ (x) is a solution of the Laplace equation – at least everywhere it is defined. This is the
2-dimensional analogue of the fundamental solution 1/ ‖x‖ to the Laplace equation in 3-dimensions.

• Now consider, for any ε > 0,

φε (x) := ln (‖x‖+ ε) = ln |r + ε| (in polar coordinates)

This is a well-defined smooth function of x for all x ∈ R2 and we have

∇2φε (x) =
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Now consider ∫
R2

∇2φε (x) d2x =

∫ ∞
0

∫ 2π

0

ε

r (r + ε2)
rdrdθ

= 2π

∫ ∞
0

ε

(r + ε)
2 dr

= lim
R→∞

−2πε

r + ε

∣∣∣∣R
0

= 2π (independent of ε)

And so
1

2π
∇2φε

has the properties that

lim
ε−→0

1

2π
∇2φε (x) =

{
0 if x 6= 0
undefined if x = 0∫

R2

1

2π
∇2φε (x) = 1 independent of ε

and so we are justified in setting

− 1

2π
∇2φε (x) = δ(2) (x)

and even, upon making a change of variables,

− 1

2π
∇2φε (x− xo) = δ(2) (x− x0)
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• Now let D ⊂ R2 be a closed, solid, domain in R2 and let ∂D be its boundary. Green’s second
identity says ∫

D

(
φ∇2ψ − ψ∇2φ

)
dA =

∫
∂D

(φ∇ψ − ψ∇φ) · n dC

Now let φ (x) be any solution of Laplace’s equation on D and take ψ (x) = ψε = 1
2π ln ‖x− xo‖.

We then have∫
D

φ (x)

(
1

2π
∇ ln (‖x− xo‖+ ε)

)
dA =

1

2π

∫
∂D

(φ∇ ln (‖x− xo‖+ ε)− ln (‖x− xo‖+ ε)∇φ) · n dC

Taking the limit ε→ 0, we get

φ (xo) =

∫
D

φ (x) δ(2) (x− xo) dA =
1

2π

∫
∂D

(φ∇ ln (‖x− xo‖)− ln (‖x− xo‖)∇φ) · n dC

5. A Green’s function Gy (x) for the Laplace operator ∇2 and domain D and a point y ∈ D, is a function
defined for all x in D such that

(i) Gy (x) posseses continuous second derivatives and ∇2Gy (x) = 0; except at the point x = y.
(ii) Gy (x) = 0 for all x on the boundary ∂D of D.
(iii) The function

Gy (x) +
1

4π ‖x− y‖
is finite at y, has continuous second partial derivatives everywhere and is harmonic at y.

Show that such a function is unique. (You can assume such a function always exists - this is, in
fact, true.)

• Consider

ϕ0 (x) = Gy (x) +
1

4π ‖x− y‖
with Gy (x) satisfying conditions (i), (ii), (iii) above. Evidently, ϕ0 (x) satifies Laplace’s equation
at all points of D including x = y, because

∇2

(
Gy (x) +

1

4π ‖x− y‖

)
= 0 + 0 = 0 ∀ x 6= y

and because of (iii). Moreover, ϕ0 (x) satisfies

(*) ϕ (x)|∂D = Gy (x) +
1

4π ‖x− y‖

∣∣∣∣
∂D

=
1

4π ‖x− y‖

∣∣∣∣
∂D

by (ii). Hence, ϕ0 (x) is unique because there is exactly one solution of Laplace’s equation on D
satisfying the Dirichlet boundary conditions (*). But then if φ0 (x) is unique, then

Gy (x) = ϕ0 (x)− 1

4π ‖x− y‖
is unique.


