Math 4263
Solutions to Homework Set 4

1. Show that a function f(z) = u(z) + iv (z) of a complex variable z = x + iy that satisfies the Cauchy-
Riemann equations
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also has the property that both its real part w(z) and its imaginary part v (z) satisfy Laplace’s equation:
ie.,
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Ugy + Uyy = 0 = Vg + Vyy

e We have
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and so
Uggy + Uyy =0
Similarly,
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Vg + Vyy = 0

and so

2. Let g (z) be any piecewise continuous function on R. Show directly from the definition, that the mapping

¢, : C (R) — R given by
- [ @@

defines a distribution.

o Let ¢1f1 () + cafz (x) be an arbitary linear combination of functions in C2° (R). We have

b, (cofs +cafs) = / T (erhi (@) + eafe (@) g () de

cl/ fi(x dx-l-cz/oo f2 (%) g (x) dx
= Cl¢g (f1) + C2¢g (f2)

and so ¢, is a linear functional on Cg° (R). Strictly speaking, however, this is not enough to prove
that ¢, is a distribution. For a distribution is a continuous linear functional on CZ° (R). To prove
the continuity of ¢,, we must check that if {fi, fa,...} is a sequence of functions in C2° (R) that
vanish outside a common interval and converge uniformly to a function f € C2° (R) then

Tim g, () = 6, ()

In the case at hand, we thus need
lim fn x)dr = / f(z whenever {f1, fo,...} converges uniformly to f
n— oo

Now unlform convergence means the following: {f,}, oy converges uniformly to f if for every € > 0,
there exists a natural number N such that |f, (z) — f (z)| < € for all z € R and for all n > N. Now
consider
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Since {f,} converges uniformly to f, for any € > 0 we can find an N such that
|fn(z) — f(z)] <eforallm >N and all z € R

In fact, we are assuming, moreover, that the functions {f,} and f all vanish outside a certain finite
interval I. Let L be the length of that interval and let G be the maximum value of g (z) in I. Then
we have for all n > N

/_an(w)g(w)dw—/_o;f(w)g(w)dw

< /_°° 1 () — £ ()] g (2)]| da
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< LGe

= (some finite constant) x €

Letting € — 0, we see we can force

‘/ fn(x)g dac—/ f(@)g(z)dz| —0
and so
Jim ¢y (fn) = &, (f)
as required.
3. Let 1 be any distribution. Verify that the functional 1)’ defined by
d
v)=-u (L)
is a distribution.
o The linearity of ¢’ is easily verifed:
Y (afi+eaf) = —¢ ( (crfr + szz))
= — cld—fl + czd—f2 by properties of differentiation
dz dz

d,
= —c < ) — ot ( f2> by linearity properties of the distribution v

= ot (fi) + ¥ (f2)

The continuity of 1 follows from the well-known' fact that if {f,,} is a sequence of smooth functions

. dfn
that converges uniformly to f on a compact sets then { s }

df, 4 .
lim f, =f wniformly = lim i = —f uni formly
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converges uniformly to d— Thus,

and so
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lim ¥ (f,) = hm — <df"> = —1 (df> since 1 is a distribution and (g—; converges uniformly to %
Thus,
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li_>m fo=[f wuniformly = lim ¢ (fn) = ¢ (df>

and so ¢’ is a continuous linear functional on C<° (R), hence a distribution.

IThis is typically proved somewhere in Math 4023: Introduction to Modern Analysis.



4. Let u(x) = u(z,y) be a harmonic function on a planar domain D. Derive the representation formula

w(x0) = o /aD[U(X)(VIDHXonH)f(VU(X))lonfon]~ndS
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that expresses u (xo) at an interior point X as a certain integral of u (x) and its gradient over the boundary
of D.

e Consider the function

600 = In x| = n (Va2 +42) = S Infa? + 42|

We have
s B 6(1 2x )_—x2+y2
= P\ 222 + 2 _(x2+y2)2
o (1 2y 22 —y?
byy = 3y<2$2+y2>:(m2+y2)2
Thus,
P + Py =0

and so ¢ (x) is a solution of the Laplace equation — at least everywhere it is defined. This is the
2-dimensional analogue of the fundamental solution 1/ ||x]|| to the Laplace equation in 3-dimensions.
e Now consider, for any € > 0,

¢ (x) :=In(||x]| +¢) =In|r + ¢ (in polar coordinates)
This is a well-defined smooth function of x for all x € R? and we have
V.00 = (b 0+ 1o (0) + S0 00)) -
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Now consider
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And so 1
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has the properties that
EI_H_I}O %V ¢ (x) = { undefined ifx=0
1
— V% (x) = 1 independent of €
R2 2

and so we are justified in setting
1
—5- V0. (x) =6 (x)
27
and even, upon making a change of variables,

1
f%Vchs (x—x%,) = 5@ (x —xp)



e Now let D C R? be a closed, solid, domain in R? and let dD be its boundary. Green’s second
identity says

/ (qSVQw - z/JV2¢) dA = / (VY —pV @) - n dC
D aD

Now let ¢ (x) be any solution of Laplace’s equation on D and take 9 (x) =1, = 5= In [lx — x,|.
We then have
1

1
/qu(x) (27TV1n(x — X, +s)> dA = o /aD (dVIn(||lx — %0l + &) —In(||x —x,|| +&) V@) - n dC

Taking the limit ¢ — 0, we get
o (x0) = / ¢ (x) 5@ (x —x,)dA = i/ (6VIn(||lx — x0||) — In(||x — x,||) Vo) - n dC
D 21 Joap

5. A Green’s function Gy (x) for the Laplace operator V? and domain D and a point y € D, is a function
defined for all x in D such that

(i) Gy (x) posseses continuous second derivatives and V2Gy (x) = 0; except at the point x = y.
(ii) Gy (x) =0 for all x on the boundary 0D of D.
(i) The function
1
dr[[x =yl
is finite at y, has continuous second partial derivatives everywhere and is harmonic at y.
Show that such a function is unique. (You can assume such a function always exists - this is, in
fact, true.)
e Consider

Gy (x) +

1
x) =Gy (x) + ———
QOO( ) y( ) 47T||X—yH

with Gy (x) satisfying conditions (i), (ii), (iii) above. Evidently, ¢, (x) satifies Laplace’s equation
at all points of D including x =y, because
v? (Gy(x)+4ﬂ|xl_y”> =0+0=0 Vx#y
and because of (iii). Moreover, @, (x) satisfies
1
Ar [x =yl

B 1
oD dr |x — | oD

by (ii). Hence, @, (x) is unique because there is exactly one solution of Laplace’s equation on D
satisfying the Dirichlet boundary conditions (*). But then if ¢ (x) is unique, then

Gy (39 = 20 (%)~

) ¢ (X)op = Gy (x) +

is unique.



