Math 4263
Solutions to Homework Set 2

1. Use the Maximum Principle for the Heat Equation to demonstrate that there is a unique solution to

— KUy = f(x,0) , 0<z<L , t>0 (1a)
u(0,t) = g(t) ) t>0 (1b)
w(L,t) = h(¥) : t>0 (1c)
u(z,0) = ¢(x) ) 0<z<L (1d)

e According to the Maximum Principle, any solution v (¢, x) of the homogeneous Heat Equation
— KUy, =0 , 0<z<L , t>0
attains it maximal value in the rectangle
R={(x1t)|0<z<L , 0<t<T}

on one of the three sides

6= {0,0)]0<t<T}
6 = {(z,0)|0<z<L}
ts = {(L)|0<t<T}
Now suppose u; and us are two solutions of (1a) - (1b). Then
(z,t) = uy (x,t) — ug (z,1)

will satisfy

0 0
— kug, = 5% (ug —ug) — ka (ur — u2)
0 , 8 P , 8
= &Ul_k @114_5162—'_]{: ﬁl@
= f(xat)ff(xvt)
= 0

And so the Maximum Principle implies that v (z,t) must attain its maximal value on one of the
boundary lines ¢1, ¢2, 3. But by virtue of equations (1b), (1c¢) and (1d), we have

v(0,t) = w1 (0,t) —u2(0,t)=g(t)—g(t)=0 |,
v(Lt) = w (Lt)—ug (L) =h(t)—h(t)=0 ,
v(z,0) = wu(z,0) —uy(2,0) =¢(x) —$(z) =0

Thus, the maximal value of v (z,t) = uy (z,t) — ug (z,t) throughout the rectangle R is 0. Applying
the same argument to v’ (z,t) = ug (z,t) — uy (z,t) = —u(x,t), we can conclude the maximal value
of |ug (z,t) — ug (x,t)| throughout R is 0. This means u; (z,t) hast to equal uy (x,t) throughout R.
Hence, any solution of (1a) — (1d) is unique.

2. Prove the following identities

ifm=n

/W sin (ma) sin (nz) dz = {g e (2a)

—T

/7T sin (mz) cos (nz)dx = 0 (2b)

T m ifm=n
[Wcos(mz)cos(mn)d:c = {0 it m £ (2¢)
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e By the addition and subtraction formulas for cosine functions

cos (A + B) = cos (A) cos B — sin (A) sin (B)
cos (A — B) = cos (A) cos (B) + sin (A) sin (B)

we have
. . 1 1
sin(A)sin (B) = 5 cos (A-B) - 5 cos (A+ B)
1 1
cos(A)cosB = icos(A—i—B) + 5 cos (A-B)
Thus, if m #n

/7T sin (mx) sin (nz)dz = 1/7r cos((m—n):lc)dﬂc—%/Tr cos ((m+n)z) dz

o 2 ), —r

11 11 "

= im_nsm((mfn):r)_Tr im—l—nsm((ern)z)_n
1 1 . .

= 5m_n(sm(m—mr)—5111((71—771)7T))
1 1 . .
—§m+n(sm((m—l—TL)W)—Sln(—(m"‘n)ﬁ))

= 0

because sin (x) vanishes whenever z is an integer multiple of 7. On the other hand, if m = n, then

/ sin (nz) sin (nx) dz = %/ cos((n—n)x)dm—%/ cos ((n+n)z)dx
1 (7 1 /"
= 5/ cos(O)dx—§/ cos (2nz) dx
1 /" 11 . T
= 5/_Trldac— 5%51n(2nm) B
1
= = (=m)+0
7r
Formula (2a) now follows.
e Similarly, if m #n
™ 1 ™
/ cos(m:)cos(ma:)dm:§/ cos((n+m)z)de + = / cos ( m) x)dx
S| (tn—m)2)|
= - sin ((n +m = sin ((n —m)x
(n+m) _ 2( ) -

(sin ((n +m) ) —sin (— (n + m) 7))




and if m=n

™ 1 ™ 1 U
/ cos (nz) cos (nx) de = 5/ cos((n+n)m)d:c+§/ cos((n —n)z)de
1 (7 1 (7
= 5/ cos (2nz) da:+§/ cos (0) dz
EENA R YA
=3\ 5, )sin(ne - 5T -
1
=0+0+§(7T—(—7T))
=
Formula (2¢) now follows

e To prove Formula (2b) we use the sine addition formula

sin(A+ B) = sin(A)cos(B) + cos(A)sin (B)
sin(A—B) = sin(A)cos(B) — cos(A)sin (B)

to get
sin (A) cos (B) = % sin(A+ B) + % sin (A — B)

Now suppose m # n, then

/7r sin (mx) cos (nx) dz = %/ﬂ

i sin ((m — n) z) dx

sin((m—i—n)x)dm—i—%/

1 -1 T T
= SmTn (cos ((m +n)x)) - + Y — (cos ((m —mn)x)) -
1 1
= 3w (cos((m+mn)m) —cos(— (m+n)m))
1 1
5 (cos ((m —mn)7) — cos (— (m —n)m))
=0
because cos (z) = cos (—z) for all x.
When m = n, we have
/_: sin (nz) cos (nx)dx = Tr x)dx + ; /_T; sin (0) dz

and Formual (2b) now follows.

/ sin (
/ sin ( dx
11
S5m (cos (2nm) — cos (—2nm))

\
=

3. Consider the following Heat Equation boundary value problem:

—kuy, = 0, 0<z<L , t>0
w(0,¢) = 0 , t>0

u(L,t) = 0 ) t>0

u(z,0) = ¢(x) , 0<z<L

A~~~
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(a) Apply the method of Separation of Variables to find a family of solutions of (3a) the form u (z,t) =

X (2)T ().
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(b) Impose the boundary conditions (3b) and (3c) to find a more specialized family of solutions w, (z,t) =
X, (z) T, (t) satistying (1a)—(1c).
(c) Set
u(z,t) = Z Ay, (z,t)

where the u,, (z,t) are the solutions found in (b), impose (3d), and then use properties of Fourier expansions
to determine the coefficients a,,.

o We set u(z,t) = X ()T (t) and plug into the PDE (3a):

Uy — kU =0 = X ()T (t) —kK*X" ()T (t) =0
Dividing both sides fo the latter equation by X (x) T (t) we get

') LX)
T(t) X (x)

=0

or
17 X" (x)
E2T () X (x)
The circumstance that the left hand side depends only on ¢ while the right hand side depends only
on z implies both sides must equal a constant which we shall write as —A? (which we can do without
loss of generality - at this point —A? might be real or complex). The equations

LT (t) 2 / 2
— = =) T (t) = — (kN T (t
T = T =—NT Q)
X" (l‘) 2 " 2
X ) A = (2) A X (z)
have as their general solutions
X (x) = Acos(Az)+ Bsin(A\z)
T(t) = Ce®Nt

Putting X (x) and T (t) back together we arrive at
ux a8 (z,t) = Ae ¥t cog (Az) + Be ¥ ! gin (\z)

This completes part (a). The (infinite) family of solutions of (3a) obtained by letting the parameters
A, A and B vary over the complex numbers.
e We now impose the boundary conditions (3b) and (3c) on the functions uy 4,5. (3b) requires

0=wuxa,B (0,t) = Ae_kz)‘zt CcoS (O) + Be_k%‘zt sin (0) — Ae—k2>\2t

Since this must be true for all ¢ > 0, we are forced to take A = 0. Setting A = 0 and imposing (3c)
leads to

0 =uxo.5 (L, t) = Be ™ *sin (AL)

Now we can’t set B = 0 without trivializing our solution completely, and the factor e~ KAt is never

equal to zero for any finite xz. We thus need

0 = sin(AL) = AL=nx for some integer n

nm
= A= —
L

We thus arrive at the following family of solutions to (3a), (3b) and (3c).

nkwx \2
Up (x,t) = bnef( )t sin (n%x)




t

e Finally, we form a linear combination of the solutions w,, (z,t)

i (4" in (")

and impose the last boundary condition

¢(x) =u(z,0)= i bne’ sin (%z) = i by, sin (%x)
n=1 n=1

To determine the coefficients b,,, we multiply both sides of this last equation by %sin (%x) and
integrate over the interval [0, L]

E/L ¢ () sin (%x) dx
0

/ an sin —x) 51n( 7 x) dx
= 2:: < /L sin (Tx) sin (%z) dz)
Now
Z/OL sin (n%x) sin (%w) de =6 = { (1) iz ; Z

and so only one term on the right hand side (the one where m = n) will contribute to the total
sum. Thus,

L o0
%/o ¢ () sin (%m) dx = ; Db = b

Hence, the solution to the original problem is

t) = Z bnef(%)% sin (%x)
n=1

with the coefficients b,, determined by

= Z/OLgf)(x)sin (%x) dx

4. Find the solution of the following PDE/BVP:

Up — Ugy = 0 , 0<z<1 , t>0 (4a)
w(@t) = 0 , t>0 (4b)
u(l,t) = 0 , t>0 (4c)
u(x,0) = 1-—z* | 0<z<1 (4d)

e This problem is similar to Problem 3 except that we have given an explicit function of x as a Cauchy
boundary condition at ¢t = 0.
We thus set L =1, ¢ (z) = 1 — 22 and pick up with the formula at the end of part (c) of Problem
3.

= Z be~ ("%t gin (nmx)

n=1



with

1
b, = 2/ (1 — 2?) sin (nmz) da
0
1 1
= 2/ sin (nwz) do — 2/ z?sin (nmx) de
0 0
2
= 53 ((n®n?2? — n®x? — 2) cos (nrz) — 2nmz cos (nrz))
2 2 2
= 53 (n*m® + 2 — 2cos (nm))
Now when n is even cos (nm) =1 and so for even n,
b 2n2m? 2
" omdmd onrm
When n is odd cos (nm) = —1 and we have
b 2n2m? + 4
" n3gp3

2 2 4
u (m,t) = Z <n> e—(nkﬂ')% sin (nﬂ'm) 4 Z (W) e—(nkﬂ)Qt sin (TL?TZ‘)

n,odd

1

0



