Math 4263 Solutions to Homework Set 2

1. Use the Maximum Principle for the Heat Equation to demonstrate that there is a unique solution to

$$u_t - k^2 u_{xx} = f(x, t)$$
 , $0 \le x \le L$, $t > 0$ (1a)

$$u(0,t) = g(t) , \quad t > 0$$
 (1b)

$$u\left(L,t\right) = h\left(t\right) , \quad t>0$$
 (1c)

$$u(x,0) = \phi(x) , \quad 0 \le x \le L$$
 (1d)

• According to the Maximum Principle, any solution v(t,x) of the homogeneous Heat Equation

$$u_t - k^2 u_{xx} = 0$$
 , $0 \le x \le L$, $t > 0$

attains it maximal value in the rectangle

$$R = \{(x, t) \mid 0 \le x \le L \quad , \quad 0 \le t \le T\}$$

on one of the three sides

$$\begin{array}{rcl} \ell_1 & = & \{(0,t) \mid 0 \le t \le T\} \\ \ell_2 & = & \{(x,0) \mid 0 \le x \le L\} \\ \ell_3 & = & \{(L,t) \mid 0 \le t \le T\} \end{array}$$

Now suppose u_1 and u_2 are two solutions of (1a) - (1b). Then

$$v(x,t) = u_1(x,t) - u_2(x,t)$$

will satisfy

$$v_{t} - k^{2}v_{xx} = \frac{\partial}{\partial t}(u_{1} - u_{2}) - k^{2}\frac{\partial^{2}}{\partial x^{2}}(u_{1} - u_{2})$$

$$= \frac{\partial}{\partial t}u_{1} - k^{2}\frac{\partial^{2}}{\partial x^{2}}u_{1} - \frac{\partial}{\partial t}u_{2} + k^{2}\frac{\partial^{2}}{\partial x^{2}}u_{2}$$

$$= f(x, t) - f(x, t)$$

$$= 0$$

And so the Maximum Principle implies that v(x,t) must attain its maximal value on one of the boundary lines ℓ_1, ℓ_2, ℓ_3 . But by virtue of equations (1b), (1c) and (1d), we have

$$v(0,t) = u_1(0,t) - u_2(0,t) = g(t) - g(t) = 0 ,$$

$$v(L,t) = u_1(L,t) - u_2(L,t) = h(t) - h(t) = 0 ,$$

$$v(x,0) = u_1(x,0) - u_2(x,0) = \phi(x) - \phi(x) = 0 .$$

Thus, the maximal value of $v(x,t) = u_1(x,t) - u_2(x,t)$ throughout the rectangle R is 0. Applying the same argument to $v'(x,t) = u_2(x,t) - u_1(x,t) = -u(x,t)$, we can conclude the maximal value of $|u_1(x,t) - u_2(x,t)|$ throughout R is 0. This means $u_1(x,t)$ hast to equal $u_2(x,t)$ throughout R. Hence, any solution of (1a) - (1d) is unique.

2. Prove the following identities

$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} \pi & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$
 (2a)

$$\int_{-\pi}^{\pi} \sin(mx)\cos(nx) dx = 0$$
 (2b)

$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \begin{cases} \pi & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$
 (2c)

1

• By the addition and subtraction formulas for cosine functions

$$\cos(A + B) = \cos(A)\cos B - \sin(A)\sin(B)$$
$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

we have

$$\sin(A)\sin(B) = \frac{1}{2}\cos(A-B) - \frac{1}{2}\cos(A+B)$$
$$\cos(A)\cos B = \frac{1}{2}\cos(A+B) + \frac{1}{2}\cos(A-B)$$

Thus, if $m \neq n$

$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos((m-n)x) dx - \frac{1}{2} \int_{-\pi}^{\pi} \cos((m+n)x) dx$$

$$= \frac{1}{2} \frac{1}{m-n} \sin((m-n)x) \Big|_{-\pi}^{\pi} - \frac{1}{2} \frac{1}{m+n} \sin((m+n)x) \Big|_{-\pi}^{\pi}$$

$$= \frac{1}{2} \frac{1}{m-n} \left(\sin((m-n\pi) - \sin((n-m)\pi)) - \frac{1}{2} \frac{1}{m+n} \left(\sin((m+n)\pi) - \sin((-m+n)\pi) \right) \right)$$

$$= 0$$

because $\sin(x)$ vanishes whenever x is an integer multiple of π . On the other hand, if m = n, then

$$\int_{-\pi}^{\pi} \sin(nx) \sin(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos((n-n)x) dx - \frac{1}{2} \int_{-\pi}^{\pi} \cos((n+n)x) dx$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} \cos(0) dx - \frac{1}{2} \int_{-\pi}^{\pi} \cos(2nx) dx$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} 1 dx - \frac{1}{2} \frac{1}{2n} \sin(2nx) \Big|_{=\pi}^{\pi}$$

$$= \frac{1}{2} (\pi - (-\pi)) + 0$$

$$= \pi$$

Formula (2a) now follows.

• Similarly, if $m \neq n$

$$\int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos((n+m)x) dx + \frac{1}{2} \int_{-\pi}^{\pi} \cos((n-m)x) dx$$

$$= \frac{1}{2} \frac{1}{(n+m)} \sin((n+m)x) \Big|_{-\pi}^{\pi} + \frac{1}{2} \frac{1}{(n-m)} \sin((n-m)x) \Big|_{-\pi}^{\pi}$$

$$= \frac{1}{2} \frac{1}{(n+m)} \left(\sin((n+m)\pi) - \sin(-(n+m)\pi) \right)$$

$$+ \frac{1}{2} \frac{1}{(n-m)} \left(\sin(\pi(n-m)\pi) - \sin((m-n)\pi) \right)$$

$$= 0 + 0 + 0 + 0$$

$$= 0$$

and if m = n

$$\int_{-\pi}^{\pi} \cos(nx) \cos(nx) \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos((n+n)x) \, dx + \frac{1}{2} \int_{-\pi}^{\pi} \cos((n-n)x) \, dx$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} \cos(2nx) \, dx + \frac{1}{2} \int_{-\pi}^{\pi} \cos(0) \, dx$$

$$= \frac{1}{2} \left(\frac{1}{2n}\right) \sin(nx) \Big|_{-\pi}^{\pi} + \frac{1}{2} x \Big|_{-\pi}^{\pi}$$

$$= 0 + 0 + \frac{1}{2} (\pi - (-\pi))$$

$$= \pi$$

Formula (2c) now follows

• To prove Formula (2b) we use the sine addition formula

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

$$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$

to get

$$\sin(A)\cos(B) = \frac{1}{2}\sin(A+B) + \frac{1}{2}\sin(A-B)$$

Now suppose $m \neq n$, then

$$\int_{-\pi}^{\pi} \sin(mx)\cos(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} \sin((m+n)x) dx + \frac{1}{2} \int_{-\pi}^{\pi} \sin((m-n)x) dx$$

$$= \frac{1}{2} \frac{-1}{m+n} \left(\cos((m+n)x)\right) \Big|_{-\pi}^{\pi} + \frac{1}{2} \frac{-1}{m-n} \left(\cos((m-n)x)\right) \Big|_{-\pi}^{\pi}$$

$$= -\frac{1}{2} \frac{1}{m+n} \left(\cos((m+n)\pi) - \cos(-(m+n)\pi)\right)$$

$$-\frac{1}{2} \frac{1}{m-n} \left(\cos((m-n)\pi) - \cos(-(m-n)\pi)\right)$$

$$= 0$$

because $\cos(x) = \cos(-x)$ for all x.

When m=n, we have

$$\int_{-\pi}^{\pi} \sin(nx)\cos(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} \sin((2n)x) dx + \frac{1}{2} \int_{-\pi}^{\pi} \sin(0) dx$$
$$= \frac{1}{2} \int_{-\pi}^{\pi} \sin((2n)x) dx$$
$$= -\frac{1}{2} \frac{1}{2n} (\cos(2n\pi) - \cos(-2n\pi))$$
$$= 0$$

and Formual (2b) now follows.

3. Consider the following Heat Equation boundary value problem:

$$u_t - k^2 u_{xx} = 0 , \quad 0 \le x \le L , \quad t > 0$$
 (3a)

$$u(0,t) = 0 , t > 0 (3b)$$

$$u(L,t) = 0$$
 , $t > 0$ (3c)
 $u(x,0) = \phi(x)$, $0 \le x \le L$ (3d)

$$u(x,0) = \phi(x) , \qquad 0 \le x \le L \tag{3d}$$

(a) Apply the method of Separation of Variables to find a family of solutions of (3a) the form u(x,t) =X(x)T(t).

(b) Impose the boundary conditions (3b) and (3c) to find a more specialized family of solutions $u_n(x,t) = X_n(x) T_n(t)$ satisfying (1a)–(1c).

(c) Set

$$u\left(x,t\right) = \sum_{n} a_{n} u_{n}\left(x,t\right)$$

where the $u_n(x,t)$ are the solutions found in (b), impose (3d), and then use properties of Fourier expansions to determine the coefficients a_n .

• We set u(x,t) = X(x)T(t) and plug into the PDE (3a):

$$u_t - k^2 u_{xx} = 0 \implies X(x) T'(t) - k^2 X''(x) T(t) = 0$$

Dividing both sides fo the latter equation by X(x)T(t) we get

$$\frac{T'(t)}{T(t)} - k^2 \frac{X''(x)}{X(x)} = 0$$

or

$$\frac{1}{k^{2}}\frac{T'\left(t\right)}{T\left(t\right)} = \frac{X''\left(x\right)}{X\left(x\right)}$$

The circumstance that the left hand side depends only on t while the right hand side depends only on x implies both sides must equal a constant which we shall write as $-\lambda^2$ (which we can do without loss of generality - at this point $-\lambda^2$ might be real or complex). The equations

$$\frac{1}{k^2} \frac{T'(t)}{T(t)} = -\lambda^2 \implies T'(t) = -(k\lambda)^2 T(t)$$

$$\frac{X''(x)}{X(x)} = -\lambda^2 \implies X''(x) = -\lambda^2 X(x)$$

have as their general solutions

$$X(x) = A\cos(\lambda x) + B\sin(\lambda x)$$

 $T(t) = Ce^{-k^2\lambda^2 t}$

Putting X(x) and T(t) back together we arrive at

$$u_{\lambda,A,B}(x,t) = Ae^{-k^2\lambda^2t}\cos(\lambda x) + Be^{-k^2\lambda^2t}\sin(\lambda x)$$

This completes part (a). The (infinite) family of solutions of (3a) obtained by letting the parameters λ , A and B vary over the complex numbers.

• We now impose the boundary conditions (3b) and (3c) on the functions $u_{\lambda,A,B}$. (3b) requires

$$0 = u_{\lambda,A,B}(0,t) = Ae^{-k^2\lambda^2t}\cos(0) + Be^{-k^2\lambda^2t}\sin(0) = Ae^{-k^2\lambda^2t}$$

Since this must be true for all t > 0, we are forced to take A = 0. Setting A = 0 and imposing (3c) leads to

$$0 = u_{\lambda,0,B}(L,t) = Be^{-k^2\lambda^2 t} \sin(\lambda L)$$

Now we can't set B=0 without trivializing our solution completely, and the factor $e^{-k^2\lambda^2t}$ is never equal to zero for any finite x. We thus need

$$0 = \sin(\lambda L) \implies \lambda L = n\pi \quad \text{for some integer } n$$

$$\implies \lambda = \frac{n\pi}{L}$$

We thus arrive at the following family of solutions to (3a), (3b) and (3c).

$$u_n(x,t) = b_n e^{-\left(\frac{nk\pi}{L}\right)^2 t} \sin\left(\frac{n\pi}{L}x\right)$$

• Finally, we form a linear combination of the solutions $u_n(x,t)$

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-\left(\frac{nk\pi}{L}\right)^2 t} \sin\left(\frac{n\pi}{L}x\right)$$

and impose the last boundary condition

$$\phi(x) = u(x,0) = \sum_{n=1}^{\infty} b_n e^0 \sin\left(\frac{n\pi}{L}x\right) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{L}x\right)$$

To determine the coefficients b_n , we multiply both sides of this last equation by $\frac{2}{L}\sin\left(\frac{m\pi}{L}x\right)$ and integrate over the interval [0, L]

$$\frac{2}{L} \int_{0}^{L} \phi(x) \sin\left(\frac{m\pi}{L}x\right) dx = \frac{2}{L} \int_{0}^{L} \sum_{n=1}^{\infty} b_{n} \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx$$

$$= \sum_{n=1}^{\infty} b_{n} \left(\frac{2}{L} \int_{0}^{L} \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx\right)$$

Now

$$\frac{2}{L} \int_0^L \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx = \delta_{m,n} \equiv \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

and so only one term on the right hand side (the one where m=n) will contribute to the total sum. Thus,

$$\frac{2}{L} \int_{0}^{L} \phi(x) \sin\left(\frac{m\pi}{L}x\right) dx = \sum_{n=1}^{\infty} b_{n} \delta_{m,n} = b_{m}$$

Hence, the solution to the original problem is

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-\left(\frac{nk\pi}{L}\right)^2 t} \sin\left(\frac{n\pi}{L}x\right)$$

with the coefficients b_n determined by

$$b_n = \frac{2}{L} \int_0^L \phi(x) \sin\left(\frac{n\pi}{L}x\right) dx$$

4. Find the solution of the following PDE/BVP:

$$u_t - u_{xx} = 0$$
 , $0 \le x \le 1$, $t > 0$ (4a)
 $u(0,t) = 0$, $t > 0$ (4b)

$$u(0,t) = 0 \qquad , \qquad t > 0 \tag{4b}$$

$$u(1,t) = 0 , t > 0 (4c)$$

$$u(1,t) = 0$$
 , $t > 0$ (4c)
 $u(x,0) = 1 - x^2$, $0 \le x \le 1$ (4d)

• This problem is similar to Problem 3 except that we have given an explicit function of x as a Cauchy boundary condition at t=0.

We thus set L=1, $\phi(x)=1-x^2$ and pick up with the formula at the end of part (c) of Problem 3.

$$u\left(x,t\right) = \sum_{n=1}^{\infty} b_n e^{-(nk\pi)^2 t} \sin\left(n\pi x\right)$$

with

$$b_n = 2 \int_0^1 (1 - x^2) \sin(n\pi x) dx$$

$$= 2 \int_0^1 \sin(n\pi x) dx - 2 \int_0^1 x^2 \sin(n\pi x) dx$$

$$= \frac{2}{n^3 \pi^3} \left(\left(n^2 \pi^2 x^2 - n^2 \pi^2 - 2 \right) \cos(n\pi x) - 2n\pi x \cos(n\pi x) \right) \Big|_0^1$$

$$= \frac{2}{n^3 \pi^3} \left(n^2 \pi^2 + 2 - 2 \cos(n\pi) \right)$$

Now when n is even $\cos(n\pi) = 1$ and so for even n,

$$b_n = \frac{2n^2\pi^2}{n^3\pi^3} = \frac{2}{n\pi}$$

When n is odd $\cos(n\pi) = -1$ and we have

$$b_n = \frac{2n^2\pi^2 + 4}{n^3\pi^3}$$

And so

$$u(x,t) = \sum_{n,even} \left(\frac{2}{n\pi}\right) e^{-(nk\pi)^2 t} \sin(n\pi x) + \sum_{n,odd} \left(\frac{2n^2\pi^2 + 4}{n^3\pi^3}\right) e^{-(nk\pi)^2 t} \sin(n\pi x)$$