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1. Find the characteristic curves for the following first order PDE

xux + uuy = 1

and then use the method of characteristics to find the solution of this PDE in the region x > 1 satisfying
the following boundary conditions

u(1, y) = y .

• The characteristic curves will be solution of the following system of ODEs:
dx

dt
= x

dy

dt
= u

du

dt
= 1

This system is easily solved:
dx

dt
= x ⇒ x (t) = xoe

t

du

dt
= 1 ⇒ u (t) = t+ uo

dy

dt
= u ⇒ y (t) =

∫
(t+ uo) dt+ yo =

1

2
t2 + uot+ yo

Next we find the characteristic curves that pass through a point on the curve Σ where the boundary
conditions are defined, at t = 0:

u (1, y) = y ⇒ Σ = {[x, y, u] = [1, s, s] for some s ∈ R}

1 = x (0) = xoe
o = xo ⇒ xo = 1

s = y (0) =
1

2
(0)

2
+ uo (0) + yo ⇒ yo = s

s = u (0) = 0 + uo ⇒ uo = s

Thus, the characteristic curves we want are the curves

γs (t) =

[
et,

1

2
t2 + s (t+ 1) , t+ s

]
We now set

[x, y, u (x, y)] = γs (t) =

[
et,

1

2
t2 + s (t+ 1) , t+ s

]
From this we see

t = ln |x|

s =
y − 1

2 t
2

t+ 1
=
y − 1

2 ln |x|2

1 + ln |x|
and so

u (x, y) = t+ s = ln |x|+
y − 1

2 ln |x|2

1 + ln |x|
is the solution.
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2. State the Maximum Principle for solutions of the homogeneous heat equation and then use it to prove
the uniqueness of any solution of

ut − k2uxx = f(x, t) 0 ≤ x ≤ L , t > 0 (*)

u(0, t) = φ(t) t > 0

u(L, t) = ψ(t) t > 0

u(x, 0) = g(t) 0 ≤ x ≤ L

• The Maximal Principle says that the maximal value of any solution of the homogeneous heat
equation ut − k2uxx = 0 on a rectangular domain

R = [X1, X2]× [T1, T2]

occurs on one of the three sides

Γleft = {[X 1, t] | t ∈ [T1, T2]} , Γbottom = {[x, T ] | x ∈ [X1, X2]} , Γright = {[X 2, t] | t ∈ [T1, T2]}
Step 1. I claim the only one solution of

(**) ut − k2uxx = 0 , u (0, t) = 0 , u (x, 0) = 0 , u (L, t) = 0

is u (x, t) = 0 for all x, t. Indeed, the Maximal Principle and the boundary conditions on the solution
require the maximal value of u (x, t) is 0. But if u (x, t) is a solution of (**) so is −u (x, t), and
it too must have a maximal value of 0 (applying again the Maximal Principle and the boundary
conditions). Thus,

u (x, t) ≤ 0 for all x, t and − u (x, t) ≤ 0 for all x, t

which in turn implies
u (x, t) = 0 for all x, t

Step 2. Suppose u1 (x, t) and u2 (x, t) are two solutions of (*). Then it is easy to see that
∆u (x, t) ≡ u1 (x, t)− u2 (x, t) is a solution of (**). Hence by Step 1,

0 = ∆u (x, t) = u1 (x, t)− u2 (x, t) for all x, t

or, equivalently,
u1 (x, t) = u2 (x, t) for all x, t

Thus, u1 (x, t) and u2 (x, t) are identical.



3

3. The temperature φ inside a thin wire of length L is governed by the formula

φt − a2φxx = 0

with boundary conditions

φ(x, 0) = 3 sin

(
4π

L
x

)
, 0 < x < L

φ(0, t) = 0

φ(L, t) = 0

Use Separation of Variables and the theory of Fourier series to determine the solution to this PDE/BVP.

• We look for solutions of the form φ (x, t) = X (x)T (t). Plugging X (x)T (t) into the heat equation
we obtain

X (x)T ′ (t) = a2X ′′ (x)T (t) ⇒ 1

a2
T ′ (t)

T (t)
=
X ′′ (x)

X (x)

Consistency of this last equation requires both the left and right hand sides must be independent
of x and t. Thus, denoting this constant by −λ2, we have

1

a2
T ′ (t)

T (t)
= −λ2 =

X ′′ (x)

X (x)

or

T ′ + a2λ2T = 0 ⇒ T (t) = Toe
−a2λ2t

X ′′ + λ2X = 0 ⇒ X (t) = A cos (λx) +B sin (λx)

Thus, for each λ ∈ C, we will have two independent solutions of the heat equation

φλ,1 (x, t) = e−a
2λ2t cos (λx)

φλ,2 (x, t) = e−a
2λ2t sin (λx)

We now toss out the solutions φλ,1 since they do not satisfy the boundary condition φ (0, t) = 0.
Imposing next the second boundary condition φ (L, t) = 0 on φλ,2 we requires

0 = e−a
2λ2t sin (λL) for all t

To satisfy this last constraint we must take λ = nπ
L , n = 1, 2, 3, . . . . We are now left with solutions

φn (x, t) = e−(nπL k)
2
t sin

(nπ
L
x
)

, n = 1, 2, 3, . . .

We still have lots of solutions though, Before imposing the last boundary conditions we form a
general linear combination of the φn (x, t) (which will still satisfy the heat equation and the last
two boundary conditions)

φ (x, t) =

∞∑
n=1

Bne
−(nπL k)

2
t sin

(nπ
L
x
)

Imposing the initial condition, we have

3 sin

(
4π

L
x

)
= φ (x, 0) =

∞∑
n=1

Bn sin
(nπ
L
x
)

Multiplying both sides by 2
L sin

(
mπx
L

)
and integrating from 0 to L yields on the right

∞∑
n=1

Bn

(
2

L

∫ L

0

sin
(nπ
L
x
)

sin
(mπx

L

)
dx

)
=

∞∑
n=1

Bnδn,m = Bm

and, on the left,

3

(
2

L

∫ L

0

sin

(
4π

L
x

)
sin
(mπx

L

)
dx

)
=

{
3 if m = 4
0 if m 6= 4
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So

Bm =

{
3 if m = 4
0 if m 6= 4

We conclude

φ (x, t) = 3e−( 4πL k)
2
t sin

(
4π

L
x

)
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4. Find the eigenvalues and eigenfunctions of the following Sturm-Liouville problem

y′′ + k2y = 0

y′ (0) = 0

y (1) + y′ (1) = 0

and then show how an arbitrary function on the interval [0, 1] can be expanded in terms of these eigenfunc-
tions. Write down an explicit formula for the coeffi cients in this expansion.

• The differential equation is a second order linear homogeneous ODE with constant coeffi cients. Its
general solution is

(*) y (x) = A cos (kx) +B sin (kx)

In order to satisfy the first boundary condition we require

0 = y′ (0) = −kA sin (0) + kB cos (0) = kB ⇒ B = 0

(note that the second solution, kB = 0 ⇒ k = 0, has exactly the same effect on (*)). Substi-
tuting B = 0 into (*) and imposing the second boundar condition we find

0 = A cos (k)− kA sin (k)

We cannot set A = 0 without trivializing the solution (*), and so instead we must choose k so that

0 = cos (k)− k sin (k) ⇒ k = cot (k)

That is to say, we must choose k to be one of the roots of the transcendal equation

(**) k = cot (k) .

Since cos (−kx) = cos (kx), it suffi ces to consider only the positive roots of (**). Let us order these
as

0 < k1 < k2 < k3 < · · ·
Then functions cos (knx) are the (unnormalized) solutions to the Sturm-Liouville problem.

• Note that for this Sturm-Liouville problem p (x) = 1, q (x) = 0, and r (x) = 1. So the Sturm-
Liouville inner product is (f, g) =

∫ 1
0
f (x) g (x) (1) dx. If we set

φn (x) =
cos (kn (x))[∫ 1
0

cos2 (knx)
] 1
2

then the functions φn (x) will be the normalized solutions to the Sturm-Liouville problem. These
functions will satisfy ∫ 1

0

φn (x)φm (x) dx =

{
1 if m = n
0 if m 6= n

• Sturm-Liouville theory now tells us that any continuous function f (x) on the interval [0, 1] can be
expanded in terms of the φn

f (x) =

∞∑
n=1

anφn (x) =

∞∑
n=1

an cos (knx)

with the coeffi cients determined by the formula

an =

∫ 1

0

f (x)φn (x) dx


