Math 4263
SOLUTIONS TO FIRST EXAM
July 2, 2013

1. Find the characteristic curves for the following first order PDE
TUz +uty =1

and then use the method of characteristics to find the solution of this PDE in the region x > 1 satisfying
the following boundary conditions

u(lvy) =Y

e The characteristic curves will be solution of the following system of ODEs:

da
Wy
da
du
>z
dt
This system is easily solved:
d
d—j = z = ()=
d
di: =1 = ul)=t+u
dy 1,
i y(t) = (t+uo)dt+yo:§t + uot + Yo

Next we find the characteristic curves that pass through a point on the curve ¥ where the boundary
conditions are defined, at ¢t = O:

u(l,y)=y = X ={[z,y,u]=]I1,s,s| for some s € R}

1 = z(0)= =z, = x,=1
s = y(0)= ()+uo(0)+yo = Yo=35
s = u(0 —0—|—uO = U, =S5

s

Thus, the characteristic curves we want are the curves

1
¥, (t) = {et,th—i—s(t—&—l),t—&—s]
We now set )
oo, )] =7, () = [ 52 + 50+ 1,04
From this we see
t = In|x|

y—3t*  y— iz

t+1  1+In]a|

and so
(z,y) =t+s=In| \+y_%1n|x‘2
u(x,y) = s=In|x T o]

is the solution.
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2. State the Maximum Principle for solutions of the homogeneous heat equation and then use it to prove
the uniqueness of any solution of

u — K2uge = f(x,t) 0<z<L , t>0 @)
u(0,t) = ¢(t) t>0
u(L,t) = ¥(¥) t>0
u(z,0) = g(t) 0<z<L

e The Maximal Principle says that the maximal value of any solution of the homogeneous heat
equation u; — k?u,, = 0 on a rectangular domain

R =[X1,X5] x [Ty, Ts]
occurs on one of the three sides
Liepe ={[X ;8] [t € [T, ]} Toottom ={[x,T] |z € [ X1, Xo]} , Dhrigne = {[X 2,t] | t € [T1, T5]}
Step 1. I claim the only one solution of
(**) g — kg =0 , w(0,6)=0 , wu(z,00=0 , u(L,t)=0
isu (z,t) = 0 for all 2, t. Indeed, the Maximal Principle and the boundary conditions on the solution
require the maximal value of u (z,t) is 0. But if u (z,¢) is a solution of (**) so is —u (x,t), and

it too must have a maximal value of 0 (applying again the Maximal Principle and the boundary
conditions). Thus,

u(z,t) <0 for all z,t and —wu(x,t) <0 for all x,t
which in turn implies
u(xz,t) =0 for all x,t
Step 2. Suppose uy (z,t) and wug (x,t) are two solutions of (*). Then it is easy to see that

Au(z,t) = uy (z,t) — ug (x,t) is a solution of (**). Hence by Step 1,

0= Au(z,t) =uy (x,t) — uz (z,1) for all z,¢
or, equivalently,

up (x,t) = ug (z,t) for all z,t

Thus, u; (z,t) and us (z,t) are identical.



3. The temperature ¢ inside a thin wire of length L is governed by the formula

(bt - a’2¢:cr =0
with boundary conditions
4
¢(x,0) = 3sin <L7Tx) , O<z<L
$(0,t) = 0
¢(L,;t) = 0

Use Separation of Variables and the theory of Fourier series to determine the solution to this PDE/BVP.

e We look for solutions of the form ¢ (z,t) = X (x) T (t). Plugging X (z) T (t) into the heat equation

we obtain

17T(t)  X"(x)

a2 T(t) X (z)

Consistency of this last equation requires both the left and right hand sides must be independent
of « and ¢. Thus, denoting this constant by —A?, we have

X ()T () = a®X" ()T (1) =

17 _ 2 X"(2)
a? T (t) X (2)
or
T +a®X°T = 0 = T(t)=Te

X"+XX = 0 = X(t)=Acos(\z)+ Bsin(\z)
Thus, for each A € C, we will have two independent solutions of the heat equation
bra(z,t) = e~ Nt cog (A\x)
Pro (z,t) = e~ Nt gin (A\z)

We now toss out the solutions ¢, ; since they do not satisfy the boundary condition ¢ (0,¢) = 0.
Imposing next the second boundary condition ¢ (L,t) = 0 on ¢, , we requires

0=e“Ntgin(AL)  for all t
To satisfy this last constraint we must take A = %%, n = 1,2,3,.... We are now left with solutions
ni 2
¢, (z,1) — e~ (F°F) tgin (TIL/—WJJ) , n=123,...

We still have lots of solutions though, Before imposing the last boundary conditions we form a
general linear combination of the ¢, (x,t) (which will still satisfy the heat equation and the last
two boundary conditions)

o0

¢ (x,t) = Z Bnef(%wk)zt sin (%x)

n=1

Imposing the initial condition, we have

3sin <4[7j33> =¢(z,0) = g B, sin (Z—ﬂ-m)

mmx

Multiplying both sides by %sin (T) and integrating from 0 to L yields on the right

OOB A o (TN —OOBé 5
nz::l n E/O sm(fx)sm(T> T _nz::l Y —

and, on the left,
2 [F 4
(5[ o () in () ) - {

ifm=4
ifm+#£4



So

We conclude



t

4. Find the eigenvalues and eigenfunctions of the following Sturm-Liouville problem

y”+k2y = 0
y' () =0
yM)+y' (1) = 0

and then show how an arbitrary function on the interval [0, 1] can be expanded in terms of these eigenfunc-
tions. Write down an explicit formula for the coefficients in this expansion.

e The differential equation is a second order linear homogeneous ODE with constant coefficients. Its
general solution is

*) y(z) = Acos (kz) + Bsin (kx)
In order to satisfy the first boundary condition we require
0=1y"(0)=—kAsin(0) + kBcos(0) =kB = B=0
(note that the second solution, kB =0 =k = 0, has exactly the same effect on (*)). Substi-
tuting B = 0 into (*) and imposing the second boundar condition we find
0= Acos (k) — kAsin (k)
We cannot set A = 0 without trivializing the solution (*), and so instead we must choose k so that
0=cos(k)—ksin(k) = k=cot(k)
That is to say, we must choose k to be one of the roots of the transcendal equation
(**) k = cot (k)
Since cos (—kz) = cos (kz), it suffices to consider only the positive roots of (**). Let us order these
as
0<ky <ky<kg<--

Then functions cos (k,z) are the (unnormalized) solutions to the Sturm-Liouville problem.
e Note that for this Sturm-Liouville problem p(x) =1, g(x) = 0, and r(z) = 1. So the Sturm-

Liouville inner product is (f, g) fo g (z) (1) dz. If we set

b (z) = M

[fo cos? (knm)} ’
then the functions ¢,, (x) will be the normalized solutions to the Sturm-Liouville problem. These
functions will satisfy
1 ifm=n
/ On z) do = { 0 ifm#n

e Sturm-Liouville theory now tells us that any continuous function f (x) on the interval [0,1] can be
expanded in terms of the ¢,

Zanqb Zan cos (knx)

with the coefficients determined by the formula

=/01f(x)¢ (2) da



