
LECTURE 21

Finite Element Method and Laplace’s Equation

In practice, the finite-element is the most commonly used method for developing numerical solutions to
partial differential equations. The reason for this is two-fold. First and foremost is the ability of the finite-
element method to adapt to irregularly shaped domains; e.g. allowing one to model the aerodynamics of a
car. Secondly, instead of producing a table of values, the finite-element method actually produces a function
approximating the solution.

Consider the Dirichlet problem for the Poisson equation (a.k.a. the inhomogeneous Laplace equation) on a
planar domain D.

∇2u = f (x) ∀ x ∈ D (1a)
u (x)|∂D = 0 (1b)

Here is the basic principle underlying the finite element method. Suppose u (x) is the solution to the above
Dirichlet problem. Then

(2)
∫

D

f (x) v (x) dA =
∫

D

(
∇2u

)
v (x) dA

for every function v (x) on D. Using Green’s theorem we can write the right hand side as

−
∫

D

∇u ·∇v dA := −Φ (u, v)

and interprete the latter as a certain inner product between the functions u and v. The basic idea of the
finite-element method is to construct a function u such that

Φ (u, v) =
∫

D

f (x) v (x) dD

for all functions v (x).

A simple-minded way to think about this situation is the following. Suppose you had a vector u and you
knew its inner product with each standard basis vector e1, . . . , en. Then you’d be able to figure out u as

u = (u, e1) e1 + · · ·+ (u, en) en

This would be true even if the inner products (u, ei) were prescribed by some other computation. That is
what the formula ∫

D

f (x) v (x) dD = Φ (u, v)

is doing for us, it is prescribing the inner products of u with an arbitrary function v in terms of something
we can compute from f .

Okay, that’s the key idea. Here’s how it’s put into practice via the finite-element method.

The finite-element method begins with a triangulation of the body D; that is to say, a tiling of D by triagular
subdivisions. The idea here is the view the domain D as a finite collection of non-overlapping triangles laid
next to each other. Let the interior vertices of these triangles be labeled by v1, . . . ,vn.
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Next, we pick a set of N trial functions, h1 (x, y) , . . . , hN (x, y). Each of these functions, say vi, is chosen
so that

• at the ith vertex vi , hi (vi) = 1 and every other vertex hi (vj) = 0
• within each triangle hi is a linear function, and is piece-wise linear throughout D.

Here is how you set up such a function. Suppose vi, vj and vk are the vertices of a triangle 4ijk. Then on
∆ijk we can define

hi (x, y) = ax+ by + c

with a, b, c chosen to satisfy

hi (vi) = avi,x + bvi,y + c = 1
hi (vj) = avj,x + bvj,y + c = 0
hi (vk) = avk,x + bvk,y + c = 0

From this system of three equations in three unknowns (a, b, and c), we can determine the restriction of hi

to 4ijk, and similarly we can find the restriction of hi to any other triangle with vi as a vertex. And on all
the other triangles in D we can simply set hi (x, y) = 0. Note that once chose our triangulation, effectively
all these trial functions h1, . . . , hn are explicitly constructible.

Next we think of approximating our solution u (x, y) as a linear combination of these trial functions

(3) u (x, y) ≈
n∑

i=1

uihi (x, y)

and impose the conditions (coming from (2))

(4)
∫

D

f (x)hj (x) dA = −
∫

D

(∇u) · (∇hj) dA = −
∑
j=1

ui

∫
D

(∇hi) · (∇hj) dA for each j = 1, . . . , n

Let us now set

fj =
∫

D

f (x)hj (x) dA

Mji = −
∫

D

(∇hi) · (∇hj) dA

The conditions (4) can be written as a matrix equation M11 · · · M1n

...
. . .

...
Mn1 · · · Mnn


 u1

...
un

 =

 f1
...
fn


the solution of which can be expressed as

u = M−1f

Once we find the solution vector u, we have a piece-wise linear function u (x, y) that approximating the
actual solution of the original Dirichlet problem. But now look what happens when we evaluate (3) at a
vertex vi

u (vi) =
n∑

j=1

ujhj (vi) =
n∑

j=1

ujδij = uj

Thus, the solution vector u also furnishes with the approximate values of the solution at each
the internal vertex points.


