LECTURE 21

Finite Element Method and Laplace’s Equation

In practice, the finite-element is the most commonly used method for developing numerical solutions to
partial differential equations. The reason for this is two-fold. First and foremost is the ability of the finite-
element method to adapt to irregularly shaped domains; e.g. allowing one to model the aerodynamics of a
car. Secondly, instead of producing a table of values, the finite-element method actually produces a function
approximating the solution.

Consider the Dirichlet problem for the Poisson equation (a.k.a. the inhomogeneous Laplace equation) on a
planar domain D.

Viu = f(x) VxeD (1la)
u(x)logp = 0 (1b)

Here is the basic principle underlying the finite element method. Suppose u (x) is the solution to the above
Dirichlet problem. Then

(2) / f(x)v(x)dA = / (V2u) v(z)dA
D D
for every function v (z) on D. Using Green’s theorem we can write the right hand side as
—/ Vu- Vo dA:=— (u,v)
D

and interprete the latter as a certain inner product between the functions u and v. The basic idea of the
finite-element method is to construct a function u such that

D (u,v) = /Df(x)v(x)dD
for all functions v ().
A simple-minded way to think about this situation is the following. Suppose you had a vector u and you
knew its inner product with each standard basis vector eq,...,e,. Then you’d be able to figure out u as
u=(u,ej)e; +---+(ue,)e,

This would be true even if the inner products (u,e;) were prescribed by some other computation. That is
what the formula

/ f(x)v(x)dD = @ (u,v)
D

is doing for us, it is prescribing the inner products of u with an arbitrary function v in terms of something
we can compute from f.

Okay, that’s the key idea. Here’s how it’s put into practice via the finite-element method.

The finite-element method begins with a triangulation of the body D; that is to say, a tiling of D by triagular
subdivisions. The idea here is the view the domain D as a finite collection of non-overlapping triangles laid
next to each other. Let the interior vertices of these triangles be labeled by vq,...,v,.
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Next, we pick a set of N trial functions, hy (x,y),...,hn (z,y). Each of these functions, say v;, is chosen
so that

e at the i'" vertex v; , h; (v;) = 1 and every other vertex h; (v;) = 0
e within each triangle h; is a linear function, and is piece-wise linear throughout D.

Here is how you set up such a function. Suppose v;, v; and v;, are the vertices of a triangle A;j,. Then on
Ayjr we can define

hi (x,y) =azx+by+c
with a, b, ¢ chosen to satisfy

hi (Vz) = QU + b’ULy +c=1
hi(vj) = avjy+bvj,+c=0
hi(Vvi) = avgg+bogy+c=0

From this system of three equations in three unknowns (a, b, and c), we can determine the restriction of h;
to Ayjk, and similarly we can find the restriction of h; to any other triangle with v; as a vertex. And on all
the other triangles in D we can simply set h; (z,y) = 0. Note that once chose our triangulation, effectively
all these trial functions hq, ..., h, are explicitly constructible.

Next we think of approximating our solution u (x,y) as a linear combination of these trial functions
n
3) u(wy) = Y wihi (2,y)
i=1

and impose the conditions (coming from (2))

(4) /Df(x)hj (x)dA:f/D(Vu)o(th)dA:qul-/D(Vhi)o(th)dA foreachj=1,...,n

=1
Let us now set

5= /Df(X)hj(X)dA

M = —/ (Vhi) - (Vh;)dA
D
The conditions (4) can be written as a matrix equation
My - My, Uy fi

the solution of which can be expressed as
u=M"!f

Once we find the solution vector u, we have a piece-wise linear function w (z,y) that approximating the
actual solution of the original Dirichlet problem. But now look what happens when we evaluate (3) at a
vertex v;

w(vi) =Y uihy (vi) =Y udy; = u;
j=1 j=1

Thus, the solution vector u also furnishes with the approximate values of the solution at each
the internal vertex points.



