
LECTURE 18

Power Series Solutions

1. Review of the Power Series Method

The Power Series method is established in Math 2233 as a general technique for solving a general second
order, linear, homogeneous ODE of the form

(1) y′′ + p (x) y′ + q (x) y = 0

It provides, effectively, the Taylor expansion of a general solution that is valid in a neighborhood of any
point x0 for which the functions p (x) and q (x) are nice smooth functions. It goes like this, one suppose
that there is a solution of the form of a power series about x0

(2) y (x) =

∞∑
n=0

an (x− x0)
n

and sets

pm ≡
1

m!

dmp

dxm
(x0)

qm ≡
1

m!

dmq

dxm
(x0)

so that p (x) and q (x) can also be expressed as power series about x0

(3) p (x) =

∞∑
m=0

pm (x− x0)
m

(4) q (x) =

∞∑
m=0

qm (x− x0)
m

One has

(5) y′ (x) =

∞∑
n=0

nan (x− x0)
n−1

(6) y′
′
(x) =

∞∑
n=0

n (n− 1) an (x− x0)
n−2

Replacing y, y′, y′′, p (x) and q (x) in (1) by their power series expressions (2) – (6), one obtains

(7) 0 =

∞∑
n=0

n (n− 1) an (x− x0)
n−2

+

∞∑
n=0

∞∑
m=0

nanpm (x− x0)
m+n−1

+

∞∑
n=0

∞∑
m=0

anqm (x− x0)
m+n

One then uses power series manipulations (shifts of summation indices, peeling off initial terms, etc) so that
the right hand side of (7) can be written as single power series

(8) 0 =

∞∑
n=0

Fn (n, a∗, p∗, q∗) (x− x0)
n

1
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Here Fn (n, a∗, p∗, q∗) is the total coefficient of (x− x0)
n

on the right side of (7), it will depend n and some
of the coefficients a0, a1, . . . , an, p0, . . . , pn, q0, . . . , qn. Using the principle that a power series

f (x) =

∞∑
n=0

An (x− x0)
n

equals zero only if every coefficient An separately equals 0, we get from (8) and infinite set of equations:

F0 = 0(9)

F1 = 0

F2 = 0

...

and these (plus our knowledge of p0, p1, p2, . . . and q0, q1, q2, . . .) allow one to compute all the coefficients
a2, a3, a4, . . . in terms of the first two a0 and a1. For a general solution of (1), the constants a0 and a1,
left undetermined by the equations (9) are left as pair of arbitrary constants. On the other hand, if initital
conditions are given at x0

y (x0) = y0

y′ (x0) = y′0

then the constants a0 and a1 correspond precisely to these initial values:

a0 = y (x0)

a1 = y′ (x0)

(as one should expect; since a power series solution is the same thing as the Taylor expansion of a solution
and the first two coefficients of a Taylor expansion about x0 are y (x0) and y′ (x0)).

Let me do a simple example to help you better recall the power series technique.

Example 18.1. Solve the following initial value problem using the Power Series method:

y′′ − x2y = 0

y (1) = 2

y′ (1) = 4

• Since initial conditions are defined at x = 1, we will have to use a power series about x = 1. But
at least we know

a0 = 2 and a1 = 5

Substituting y (x) =
∑∞

n=0 an (x− 1)
n

and

x2 = 1 + 2 (x− 1) + (x− 1)
2

(the Taylor expansion of f (x) = x2 about x = 1)

into the differential equation yields

0 =

∞∑
n=0

n (n− 1) an (x− 1)
n−2 −

(
1 + 2 (x− 1) + (x− 1)

2
) ∞∑

n=0

an (x− 1)
n

=

∞∑
n=−2

(n + 2) (n + 1) an+2 (x− 1)
n

−
∞∑

n=0

an (x− 1)
n −

∞∑
n=1

2an−1 (x− 1)
n −

∞∑
n=2

an−2 (x− 1)
n
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= 0 + 0 + 2a2 + +3a3 (x− 1) +

∞∑
n=2

(n + 2) (n + 1) an+2 (x− 1)
n

− a0 − a1 (x− 1) +

∞∑
n=2

−an (x− 1)
n

− 2a0 (x− 1) +

∞∑
n=2

−2an (x− 1)
n

+

∞∑
n==2

an−2 (x− 1)
n

or

0 = (2a2 − a0) + (3a3 − a1 − 2a0) (x− 1) +

∞∑
n=2

[(n + 2) (n + 1) an+2 − an − 2an−1 − an−2] (x− 1)
n

We thus require

0 = 2a2 − a0 ⇒ a2 =
1

2
a0

0 = 3a3 − a1 − 2a0 ⇒ a3 =
1

3
(2a0 + a1)

and

0 = (n + 2) (n + 1) an+2 − an − an−1 − an−2 , n = 2, 3, 4, . . .

⇒ an+2 =
an + 2an−1 + an−2

(n + 2) (n + 1)

Now using the known values for a0 and a1 (coming from our initial conditions)

a0 = 2

a1 = 5

a2 = 1

a3 =
1

3
(4 + 5) = 3

a4 = a2+2 =
a2 + 2a1 + a0

(4) (5)
=

1 + 10 + 2

20
=

13

20

...

and so our solution to order (x− 1)
4

is

y (x) = 2 + 5 (x− 1) + (x− 1)
2

+ 3 (x− 1)
3

+
13

20
(x− 1)

4
+ · · ·

2. Limitations of the Power Series Method

Implicit in the technique given above is the requirement that the coefficient functions p (x) and q (x) in
the original differential equations had Taylor series expansions about the expansion point x0. Sometimes,
however, it will be precisely at a point where the functions p (x) or q (x) are singular where we are most
interested in understanding the solution. This, for example, will happen latter when we try to use solutions
of Bessel’s equation to develop a Separation of Variables type solution of a vibrating drum head problem.
The drum head’s motion at its center will correpond to a point where differential equation for the radial
component has a term q (x) that goes like 1

r . We will discuss a “Generalized Power Series Method” in the
next lecture to deal with the problems of constructing solutions of “singular” differential that are valid right
up to (and sometimes including) the singularities of the coefficient fuctions p (x) and q (x).
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For now, however, we’ll focus on another limitation on a power series solution: power series do not
always define valid functions.

You see in order to evaluate a power series at a point x, one can not simply sum an infiinite set of numbers
(as there is in fact no way to complete this infinite operation). Rather one has to take the limit of the
sequence of partial sums: if

(11) f (x) ≡
∞∑

n=0

anx
n

then

f (3) ≡ lim
N→∞

N∑
n=0

an3n

and the problem is that the limit on the right might not exist.

The conditions under which a power series like (11) converge is usually covered in Calculus II (as a precursor
to defining the Riemann integral). In that setting there is a large menagerie of tests (the integral test,
the ratio test, the root test, etc) on the coefficients for checking for when a given numerical series makes
converges, and through these tests a means for checking when a power series makes sense as a function.

Luckily we do not need all that apparatus to figure out for what values of x a power series solution actually
provides a function of x. We just need a couple of definitions and a big theorem.

Definition 18.2. The radius of convergence of a power series
∞∑

n=0

an (x− x0)
n

is the smallest value of |x− x0| for which

lim
N→∞

N∑
n=0

an (x− x0)
n

exists.

Theorem 18.3. If R is the radius of convergence of a power series
∞∑

n=0

an (x− x0)
n

converges to a legitimate (in fact, analytic) function for all x such that |x− x0| < R, and it diverges as a
series for all x such that |x− x0| > R.

Definition 18.4. A function f is said to be analytic at x0 if it has a Taylor expansion about x0 and this
Taylor expansion converges for all points in an ε-neighborhood of x0 :

lim
N→∞

∞∑
n=0

dnf

dxn
(x0) (x− x0)

n
exists for all x ∈ (x0 − ε, x0 + ε)

If f is analytic at x0, we say x0 is a regular point for f . Contrarily, if f (x) is not analytic at x0, but at
every other point x in an ε-neighborhood of x0 it is analytic, we say that x0 is a singular point for f .

The regular and singular points of function prescribed by a formula are usually easy to identify:

Example 18.5. Consider the function

f (x) =
2x + 1

(x− 1) (x + 2)

The singular points are the points where one factor of the other of the denominator vanishes. Thus,

singular points of f = {1,−2}
Every other point is regular

regular points of f = R−{1, 2}
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Theorem 18.6. Suppose the functions p (x) and q (x) are analytic at x0 and

(13) y (x) =

∞∑
n=0

an (x− x0)
n

is a formal power series solution to

y′′ + p (x) y′ + q (x) y = 0

Then the formal power series (13) converges to a bona fide function of x for all x such that |x− x0| is less
than the distance from x0 to the closest singular point of p and q in the complex plane.

Example 18.7. Consider the differential equation(
x2 + 1

)
y′′ + y′ +

x2 + 1

x + 2
y = 0

What is the minimal radius of convergence for a power solution about x = 3.

• To answer this question we need to figure out the singularities of

p (x) =
1

(x2 + 1)
and q (x) =

1

(x + 2)

Evidently, one or the other of these functions are singular at x = ±i and x = −2. Let’s plot these
points in the complex plane and then compute their distances from the expansion point x = 3.
We have (using plane geometry to compute distances)

‖3− i‖ =

√
(3)

2
+ (1)

2
=
√

10

‖3− (−i)‖ =

√
(3)

2
+ (−1)

2
=
√

10

‖3− (−2)‖ =

√
(5)

2
+ (0)

2
= 5

Since the shortest distance from a singular point to the expansion point x = 3 is
√

10, a power
series solution about x = 3 will converge for all x such that

|x− 3| <
√

10 ⇒ x ∈
(

3−
√

10, 3 +
√

10
)

Note that we could reach this conclusion without even calculating the power sereis solution.
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In summary, there is a straight-forward procedure for solving differential equations of the form

y′′ + p (x) y′ + q (x) y = 0

Moreover, it is relatively easy to determined the domain of validity of the resulting power series solution.
The hedge though, is this procedure doesn’t give us any information at all about the nature of solutions
close to a singularity. Determining solutions near a singular point is the topic of the next lecture.


