
LECTURE 15

Sturm-Liouville Theory

In the three preceding lectures I demonstrated the utility of Fourier series in solving PDE/BVPs. As we’ll
now see, Fourier series are just the “tip of the iceberg”of the theory and utility of special functions. Before
preceding with the general theory, let me state clearly the basic properties of Fourier series we intend to
generalize:

(i) The Fourier sine functions
{
sin
(
nπ
L x
)
| n = 1, 2, 3, . . .

}
and cosine functions

{
cos
(
nπ
L

)
x | n = 0, 1, 2, . . .

}
are solutions of a second order linear homogeneous differential equation

(1) y′′ = −λy
satisfying certain linear homogenous boundary conditions: viz, the Fourier-sine functions satisfy

(2a) y (0) = 0 = y (L)

and the Fourier-cosine functions satisfy

(2b) y′ (0) = 0 = y′ (L) .

(ii) The Fourier sine and cosine functions obey certain orthogonality relations

2

L

∫ L

0

sin
(nπ
L
x
)
sin
(mπ
L
x
)
dx =

{
1 if n = m
0 if n 6= m

2

L

∫ L

0

cos
(nπ
L
x
)
cos
(mπ
L
x
)
dx =

{
1 if n = m
0 if n 6= m

(iii) Any continuous, differentiable function on [0, L] can be expressed in terms of a Fourier-sine or
Fourier-cosine expansion

f (x) =
a0
2
+

∞∑
n=1

an cos
(nπ
L
x
)

=

∞∑
n=1

bn sin
(nπ
L
x
)

Moreover, the orthogonality relations (ii) allow us to determine the coeffi cients an and bn

an =
2

L

∫ L

0

f (x) cos
(nπ
L
x
)
dx

bn =
2

L

∫ L

0

f (x) sin
(nπ
L
x
)
dx

1. Sturm-Liouville Problems

Definition 15.1. A Sturm-Liouville problem is a second order homogeneous linear differential equation
of the form

(3)
d

dx

[
p (x)

dy

dx

]
− q (x) y + λr (x) y = 0 , ∀ x ∈ [0, 1]

1
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together with boundary conditions of the form

a1y (0) + a2y
′ (0) = 0(4a)

b1y (1) + b2y
′ (1) = 0(4b)

In what follow, λ is to be regarded as a constant parameter and we shall always assume that p (x) and r (x)
are positive functions on the interval [0, 1]

p (x) > 0 ∀ x ∈ [0, 1](5)

r (x) > 0 ∀ x ∈ [0, 1]

Example 15.2. Taking p (x) = r (x) = 1, q (x) = 0, a1 = b1 = 1, a2 = b2 = 0 , we see that the corresponding
Sturm-Liouville problem

y′′ + λy = 0

y (0) = 0

y (1) = 0

has as its solutions

λ = (nπ)
2

n = 1, 2, 3, . . . and y (x) = sin (nπx)

Note, in particular, that the solution of the Sturm-Liouville problem only exists for certan values of λ; these
values are “eigenvalues”of the Sturm-Liouville problem

Notation 15.3 (Linear differential operator notation). In what follows we shall denote by L the “linear
differential operator”

(6) L =
d

dx

[
p (x)

d

dx

]
− q (x)

which acts on a function y (x) by

L [y] =
d

dx

[
p (x)

dy

dx

]
− q (x) y

In terms of L, the differential equation of a Sturm-Liouville problem can be expressed

L [y] = −λr (x) y

Theorem 15.4 (Lagrange’s identity). Suppose u and v are two functions satisfying boundary conditions of
the form

a1y (0) + a2y
′ (0) = 0(7a)

b1y (1) + b2y
′ (1) = 0(7b)

then ∫ 1

0

(L [u] v − uL [v]) dx = 0
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Proof. We have ∫ 1

0

L [u] vdx =

∫ 1

0

(
d

dx

[
p
du

dx

]
v − quv

)
dx

=

∫ 1

0

d

dx

[
p
du

dx

]
vdx −

∫ 1

0

quvdx

= p
du

dx
v

∣∣∣∣1
0

−
∫ 1

0

(
p
du

dx

)
dv

dx
dx−

∫ 1

0

quvdx

= p
du

dx
v

∣∣∣∣1
0

−
∫ 1

0

du

dx

(
p
dv

dx

)
dx−

∫ 1

0

quvdx

= p
du

dx
v

∣∣∣∣1
0

−
(
up
dv

dx

)∣∣∣∣1
0

+

∫ 1

0

u
d

dx

(
p
dv

dx

)
dx−

∫ 1

0

quvdx

= p (u′v − uv′)|10 +
∫ 1

0

uL [v] dv(*)

where we have twice utilized the integration by parts formula∫ b

a

df

dx
gdx = fg|ba −

∫ b

a

f
dg

dx
dx

Now consider the first term in the last line

p (u′v − uv′)|10
Since u and v satisfy (7a) and (7b) we have assuming a1, a2, b1, b2 6= 0

u′ (0) = −a2
a1
u (0) , v′ (0) = −a2

a1
v (0)

u′ (1) = −b2
b1
u (1) , v′ (1) = −b2

b1
v (1)

and

u′ (0) v (0)− u (0) v′ (0) = −a2
a1
u (0) v (0)− u (0)

(
−a2
a1
v (0)

)
= 0

u′ (1) v (1)− u (1) v′ (1) = −b2
b1
u (1) v (1)− u (1)

(
−b2
b1
v (1)

)
= 0

Hence

p (u′v − uv′)|10 = p (1) (u′ (1) v (1)− u (1) v′ (1))− p (0) (u′ (0) v (0)− u (0) v′ (0))
= p (1) · 0− p (0) · 0
= 0

We can hence conclude from (*) that ∫ 1

0

(
L [u] v =

∫ 1

0

uL [v]

)
dx

and the theorem follows. �

Recall that, for example, the Fourier-sine functions sin (λx) not only satisfy certain a second order linear
differential equation

f ′′ = −λ2f
but they also satisfy certain linear homogeneous boundary conditions

f (0) = 0 = f (L)
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exactly when the parameter λ is “tuned”to the boundary conditions

f ′′ = −λ2f
f (0) = 0
f (L) = 0

 =⇒
{

λ = nπ
L

f (x) = sin
(
nπ
L x
)

What may seem a little surprising at first is that the fact that the Fourier-sine functions are solutions to a
Sturm-Liouville problem is also responsible for their orthogonality properties

2

L

∫ L

0

sin
(nπ
L
x
)
sin
(mπ
L
x
)
dx =

{
1 if n = m
0 if n 6= m

Theorem 15.5. If φ and ψ are two solutions of a Sturm-Liouville problem corresponding to different values
of the parameter λ then ∫ 1

0

φ (x)ψ (x) r (x) dx = 0 .

Proof. Suppose

L [φ] = −λ1r (x)φ
L [ψ] = −λ2r (x)ψ

with λ1 6= λ2. Then since φ, ψ satisfy the Strum-Liouville boundary conditions, we have by Theorem 11.1∫ 1

0

L [φ]ψdx =

∫ 1

0

φ (L [ψ]) dx

and because they satisfy Sturm-Liouville-type differential equations∫ 1

0

(−λ1r (x)φ (x))ψ (x) dx =
∫ 1

0

φ (x) (−λ2r (x)ψ (x)) dx

or

(λ1 − λ2)
∫ 1

0

φ (x)ψ (x) r (x) dx = 0

By hypothesis, λ1 6= λ2 and so we must conclude∫ 1

0

φ (x)ψ (x) r (x) dx = 0

�

As remarked above, it is common to write (in shorthand) the differential equation of a Sturm-Liouville
problem as

(8) L [y] = −λr (x) y

and refer to the parameter λ (corresponding to a particular solution y (x)) as an eigenvalue of the differential
operator L. This language, of course, is derived from the nomenclature of linear algebra where if A is an
n× n matrix, v is an n× 1 column vector and λ is a number such that

Av = λv

then v is called an eigenvector of A and λ is the corresponding eigenvalue of A. In fact, it is common
to use such linear-algebraic-like nomenclature throughout Sturm-Liouville theory; and henceforth we shall
refer to the functions y (x) that satisfy (8) as eigenfunctions of L and the numbers λ as the corresponding
eigenvalues of L.

Theorem 15.6. All the eigenvalues of a Sturm-Liouville problem are real.
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Proof. Consider the following inner product on the space of complex-valued solutions of a Sturm-Liouville
problem (8) (for various λ)

〈u, v〉 =
∫ 1

0

u (x) v (x) dx

Suppose
u (x) = v (x) = R (x) + iI (x)

that is, suppose we set u equal to v and split it up into its real and imaginary parts. Then

〈u, u〉 =
∫ 1

0

(R (x) + iI (x)) (R (x)− iI (x)) dx

=

∫ 1

0

[
(R (x))2 + (I (x))2

]
dx

Note now that the integrand is always non-negative. By a well-known result from Calculus, the integral of a
continuous non-negative function over a finite interval is always non-negative, and zero only if the function
is identically equal to zero. We conclude that for any continuous, non-zero, complex-valued function u (x)∫ 1

0

u (x)u (x)dx > 0

Now consider Lagrange’s identity (Theorem 11.4) when we set v (x) = u (x),

(9)
∫ 1

0

u (x)L
[
u (x)

]
dx =

∫ 1

0

u (x)L [u (x)] dx

and suppose u (x) is a Sturm-Liouville eigenfunction:

(10) L [u] = −λru for some λ ∈ C
Taking the complex conjugate of this equation, we have, because p (x), q (x), and r (x) are all assumed to
be real-valued functions,

L [u] = −λrv =⇒ L [u] = −λru

=⇒ d

dx

[
p (x)

du

dx

]
− q (x)u = −λru

=⇒ d

dx

[
p (x)

du

dx

]
− q (x)u = −λru

or

(11) L [u] = −λru
In other words, if u (x) is a solution of an S-L problem corresponding to eigenvalue λ, its complex conjugate
function will be a solution of the same S-L problem, but with eigenvalues λ.

Now plugging the right hand sides of (10) and (11) into (9), we can conclude that∫ 1

0

λ (ru)u dx =

∫ 1

0

λu (ru) dx

or

(12)
(
λ− λ

) ∫ 1

0

ruudx = 0

We have argued above that u (x)u (x) is a non-negative function, and by assumption r (x) is a positive
function on [0, 1]. Thus, the integrand is a non-negative function and

0 <

∫ 1

0

ruudx

so long as u (x) is not identically zero. We can therefore conclude from (12) that

λ− λ = 0 =⇒ λ ∈ R .
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�

In Linear Algebra, we say that an eigenvalue λ of a matrix A has multiplicity m if the dimension of the
corresponding eigenspace is m; that is to say,

m = dim NullSp (A− λI)
In Sturm-Liouville theory, we say that the multiplicity of an eigenvalue λ of a Sturm-Liouville problem

L [φ] = −λr (x)φ (x)
a1φ (0) + a2φ

′ (0) = 0

b1φ (1) + b2φ
′ (1) = 0

if there are exactly m linearly independent solutions for that value of λ.

Theorem 15.7. The eigenvalues of a Sturm-Liouville problem are all of multiplicity one. Moreover, the
eigenvalues form an infinite sequence and can be ordered according to increasing magnitude:

{eigenvalues} = {λ1, λ2, λ3, . . .} , λ1 < λ2 < λ3 < · · ·

Proof. By "all eigenvalues have multiplicity one", we mean that for each Sturm-Liouville eigenvalue λ, there
is only one linearly independent solution φ (x) of the Sturm-Liouville problem. Suppose there were two, φ1
and φ2, linearly independent solutions of

d

dx

(
p (x)

dφ

dx

)
− q (x)φ = −λr (x)φ (x)

a1φ (0) + a2φ
′ (0) = 0

b1φ (1) + b2φ
′ (1) = 0

Then, as solutions of a second order, homogeneous, linear ODE, linear independence implies

W [φ1, φ2] 6= 0 for all t ∈ [0, 1]
To see this explicitly, need some properties of the Wronskian.

Lemma 15.8. If W [y1, y2] (x) ≡ y1 (x) y′2 (x)− y′1 (x) y2 (x) = 0, then y2 (x) = Cy1 (x), wtih C a constant.

Proof. We can regard the hypothesis of the lemma as a differential equation for y2. Putting it in the
standard form of a first order linear ODE, it becomes

y′2 −
(
y′1
y1

)
y2 = 0

which has as its general solution

y2 (x) = C exp

[
−
∫ −y′1 (x)

y1 (x)
dx

]
= C exp

(∫
d

dx
(ln |y1 (x)|)

)
= C exp (ln |y1 (x)|) = Cy1 (x)

�

We also have the following lemma (which is in fact known as Abel’s Theorem)

Lemma 15.9. If y1 and y2 are two solutions of y′′ + p (x) y′ + qy = 0 then

(13) W [y1, y2] (x) = c exp

(
−
∫
p (x) dx

)
.

Proof. Since y1 and y2 are solutions

y′′1 + p (x) y
′
1 + qy1 = 0

y′′2 + p (x) y
′
2 + qy2 = 0
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If we multiply the first equation by −y2 (x), the second equation by y1 (x) and add the resulting equations,
we have

(y1y
′′
2 − y2y′′1 )− p (x) (y1y′2 − y′1y2) = 0

or
d

dx
(y1y

′
2 − y′1y2) + p (x) (y1y′2 − y2y′1) = 0

which says the Wronskian W (x) = y1 (x) y
′
2 (x)− y′1 (x) y2 (x) of y1 and y2 satisfies

d

dx
W (x) + p (x)W (x) = 0 .

This is a first order, homogeneous, linear differential equation whose solution is well-known to be

W (x) = C exp

[
−
∫
p (x) dx

]
�

Corollary 15.10. If y1 (x) and y2 (x) are two solutions of a second order, homogeneous, linear ODE,
and W [y1, y2] (x) = 0 at any point x in their domain, then y1 (x) and y2 (x) are linearly dependent (i.e.
y2 (x) = cy1 (x) with c a constant).

Proof. Note that the exponential factor in this formula (13) for W (x) is never equal to 0 (so long as its
argument is defined). Therefore, if W (x) = 0 at some point x, the constant C must equal zero, and hence
W (x) must vanish at all points x. But if W (x) = 0 for all x, we have the hypothesis of Lemma 15.8 and
so y2 (x) = Cy1 (x). �

Let’s now return to the setting of the theorem we’re trying to prove, where φ1 and φ2 are two solutions of
a S-L problem with the same eigenvalue λ. In view of Corollary 15.10, if I can show that W [φ1, φ2] (0) = 0,
I can conclude that W [φ1, φ2] (x) = 0 for all x, and hence φ1 and φ2 are linearly dependent.

Now since φ1 and φ2 also satisfy the S-L boundary conditions

a1φ1 (0) + a2φ
′
1 (0) = 0

a1φ2 (0) + a2φ
′
2 (0) = 0

or [
φ1 (0) φ′1 (0)
φ2 (0) φ′2 (0)

] [
a1
a2

]
=

[
0
0

]
This a homogeneous 2× 2 system. As such it either has a unique solution (which is a1 = a2 = 0, which will
not occur if we have a legitimate S-L boundary condition at x = 0) or

0 = det

(
φ1 (0) φ′1 (0)
φ2 (0) φ′2 (0)

)
= φ1 (0)φ

′
2 (0)− φ′1 (0)φ2 (0) =W [φ1, φ2] (0)

We can now argue

W [φ1, φ2] (0) = 0 ⇒ W [φ1, φ2] (x) = 0 for all x ⇒ φ2 (x) = λφ1 (x) ⇒ φ1, φ2 are linearly dependent

The theorem also includes the statement that the eigenvalues of a S-L can be listed in a natural order:

λ0 < λ1 < λ2 < · · ·
Since we already know the eigenvalues are real and distinct, the only thing we really have to show that
there is a lowest eigenvalue λ0. This is actually not too hard to do, but the argument takes us well astray
of the rest of the course. (It involves the use of a sort of "second derivative test" from variational calculus
to show that a “minimal solution”exists.)

The ordering of the eigenvalues λ, and the fact that they multiplicity free, establishes a certain canonical
ordering of the corresponding Sturm-Liouville eigenfunctions. We denote by φn the solution of the Sturm-
Liouville problem with λ = λn. Actually, this only determines φn (x) up to a constant multiple (because if
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φ (x) satisfies (3), (4a), (4b) then so does any constant multiple of φ (x)). It is common practise to remove
this ambiguity by demanding in addition∫ 1

0

φn (x)φn (x)r (x) dx = 1

which fixes φ (x) up to a scalar factor of the form eiα.

Moreover, the facts that the eigenvalues are all real and multiplicity free, also implies that we can choose
the φn (x) to be real-valued functions of x (because the complex span of the functions φn (x) must coincide
with that of φn (x)). Thus, we can choose the eigenfunctions of a Sturm-Liouville problem to be real-valued
functions ∫ 1

0

φn (x)φn (x)r (x) dx = 1

Theorem 15.11. Let φ1, φ2, φ3, . . . be the normalized eigenfunctions of a Sturm-Liouville problem and sup-
pose f is a piecewise continuous function on [0, 1]. Then if

cn :=

∫ 1

0

f (x)φn (x) r (x) dx

the series
∞∑
n=1

cnφn (x)

converges to
f (x+) + f (x−)

2
at each point on (0, 1).

Here
f (x±) := lim

ε→0+
f (x± ε)

Note that at any point x where f is continuous

f (x+) + f (x−)

2
= f (x) .

In summary, any time you have a differential equation of the form

d

dx

[
p (x)

dy

dx

]
− q (x) y = −λr (x) y

with homogeneous boundary conditions of the form

a1y (0) + a2y
′ (0) = 0 = b1y (1) + b2y

′ (1)

Then:

• Solutions will exist for only a discrete (but otherwise infinite) set of values for the parameter λ,
all of which are real numbers. There is a unique lowest eigenvalue λ0 and the other eigenvalues
can be totally ordered

λ0 < λ1 < λ2 < λ3 < · · ·
• For each λn, there is a solution φn of

d

dx

[
p (x)

dy

dx

]
− q (x) y = −λnr (x) y

that is unique up to a scalar factor.
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• The solutions φn, n = 0, 1, 2, . . . can be normalized such that∫ 1

0

φn (x)φm (x) r (x) dx =

{
1 if n = m
0 otherwise

• Any continuous function f (x) on the interval [0, 1] can be expanded in terms of the Sturm-Liouville
eigenfunctions φn, n = 0, 1, 2, , . . .

f (x) =

∞∑
n=0

anφn (x)

with the coeffi cients an being determined by

an =

∫ 1

0

f (x)φn (x) r (x) dx

If f (x) is merely piece-wise continuous on [0, 1], one has instead

f (x+) + f (x−)

2
=

∞∑
n=0

anφn (x)

with the coeffi cients an determined by the same formula.


