Math 4233
Homework Set 5

1. For each of the following PDEs, try using the method of separation of variables to replace the PDE by a pair of ODEs.

 (a) \(xu_{xx} + u_t = 0 \)

 (b) \(u_{xx} + u_{xt} + u_t = 0 \)

 (c) \(tu_{xx} + xu_t = 0 \)

 (d) \([p(x)u_x]_x - r(x)u_{tt} = 0 \)

 (e) \(u_{xx} + u_{yy} + xu = 0 \)

2. Find the solution of the following heat conduction problem:

 \(4u_t - u_{xx} = 0, \quad 0 < x < 2, \quad t > 0 \)

 \(u(0, t) = 0 \)

 \(u(2, t) = 0 \)

 \(u(x, 0) = 2 \sin \left(\frac{\pi x}{2} \right) - \sin(\pi x) + 4 \sin(2\pi x) \)

3. Find the solution of:

 \(4u_t - u_{xx} = 0, \quad 0 < x < 2, \quad t > 0 \)

 \(u(0, t) = 2 \)

 \(u(2, t) = -2 \)

 \(u(x, 0) = 2 \sin(\pi x) \)

4. Show that the wave equation

 \((*) \quad u_{tt} - a^2 u_{xx} = 0 \)

 can be reduced to the form

 \(u_{\xi\eta} = 0 \)

 by a change for variables \(\xi = x - at, \eta = x + at\). Conclude that the any solution of \((*) \) can be written as

 \(u(x, t) = \phi(x - at) + \psi(x + at) \).

5. Find the solution of Laplace’s equation

 \(u_{xx} + u_{yy} = 0 \)

 satisfying the boundary conditions

 \(u(x, 0) = 0 \), \(u(x, b) = g(x) \)

 \(u(0, y) = 0 \), \(u(a, y) = 0 \)

6. Express the 2-dimensional Laplace equation

 \(u_{xx} + u_{yy} = 0 \)

 in terms of polar coordinates \((r, \theta)\) and use separation of variables to reduce it to the solution of a pair of ordinary differential equations.