1. For each of the following systems carry out the following steps.

(i) Identify the critical points.
(ii) For each critical point \(c \), identify the corresponding linear system. Write down the general solution of these linear systems and discuss the stability of the solutions near the critical solution \(x(t) = c \).
(iii) Plot the direction field of the original system and discuss the evolution of the system for various initial conditions.

(a)
\[
\frac{dx}{dt} = x(1 - x - y) \\
\frac{dy}{dt} = y(1.5 - y - x)
\]

(b)
\[
\frac{dx}{dt} = x(1 - 0.5y) \\
\frac{dy}{dt} = y(-0.25 + 0.5x)
\]

2. For each of the following systems construct a suitable Liapunov function of the form \(ax^2 + cy^2 \) where \(a \) and \(c \) are to be determined. Then show that the critical point at the origin is of the indicated type.

(a)
\[
\frac{dx}{dt} = -x^3 + xy^2 \\
\frac{dy}{dt} = -2x^2y - y^3 , \quad \text{asymptotically stable}
\]

(b)
\[
\frac{dx}{dt} = x^3 - y^3 \\
\frac{dy}{dt} = 2xy^2 + 4x^2y + 2y^3 , \quad \text{unstable}
\]