MATH 4063-5023 Solutions to Homework Set 4

1. Let \mathcal{P} be the vector space of polynomials with indeterminant x. Which of the following mappings are linear transformations from \mathcal{P} to itself

(a)
$$T: p \to xp$$

• Let p_1, p_2 be two polynomials and let $\alpha, \beta \in \mathbb{F}$. We have

$$p_1 = a_n x^n + \dots + a_1 x + a_0$$

 $p_2 = b_m x^m + \dots + b_1 x + b_0$

If $n \neq m$ we can anyway replace the polynomial of lower degree (e.g. say it's p_2) with its equivalent expression

$$p_2 = 0 \cdot x^n + 0 \cdot x^{n-1} + \dots + 0 \cdot x^{m+1} + b_m x^m + \dots + b_1 x + b_0$$

So we can without loss of generality write

$$p_1 = a_n x^n + \dots + a_1 x + a_0$$

$$p_2 = b_n x^n + \dots + b_1 x + a_0$$

for a pair of arbitary polynomials. Then by the definition of scalar multiplication and addition in \mathcal{P} we'll have

$$\alpha p_1 + \beta p_2 = (\alpha a_n + \beta b_n) x^n + \dots + (\alpha a_1 + \beta b_1) x + (\alpha a_0 + \beta b_0)$$

and so

$$T(\alpha p_1 + \beta p_2) = x [(\alpha a_n + \beta b_n) x^n + \dots + (\alpha a_1 + \beta b_1) x + (\alpha a_0 + \beta b_0)]$$

$$= (\alpha a_n + \beta b_n) x^{n+1} + \dots + (\alpha a_1 + \beta b_1) x^2 + (\alpha a_0 + \beta b_0) x$$

$$= (\alpha a_n) x^{n+1} + \dots + (\alpha a_1) x^2 + (\alpha a_0) x$$

$$+ (\beta b_n) x^{n+1} + \dots + (\beta b_1) x^2 + (\beta b_0) x$$

$$= \alpha x (a_n x^n + a_1 x + a_0) + \beta x (b_n x^n + \dots + b_1 x + b_0)$$

$$= \alpha T(p_1) + \beta T(p_2)$$

Since T preserves arbitary linear combinations of elements of \mathcal{P} , it is a linear transformation. \square

(b)
$$T: p \to 2p$$

• Using the same setup as in preceding problem, we compute

$$T(\alpha p_1 + \beta p_2) = 2 [(\alpha a_n + \beta b_n) x^n + \dots + (\alpha a_1 + \beta b_1) x + (\alpha a_0 + \beta b_0)]$$

$$= (2\alpha a_n + 2\beta b_n) x^n + \dots + (2\alpha a_1 + 2\beta b_1) x + (2\alpha a_0 + 2\beta b_0)$$

$$= \alpha 2 (a_n x^n + a_1 x + a_0) + \beta 2 (b_n x^n + \dots + b_1 x + b_0)$$

$$= \alpha T(p_1) + \beta T(p_2)$$

1

Since T preseves arbitary linear combinations of elements of \mathcal{P} , it is a linear transformation. \square

(c)
$$T: p \to \frac{dp}{dx} + 2p$$

• Here we won't be so explicity as in parts (a) and (b); we'll simply use the facts that differentiation operates term by term and commutes with scalar multiplication.

$$T(\alpha p_1 + \beta p_2) = \left(\frac{d}{dx} + 2\right)(\alpha p_1 + \beta p_2)$$

$$= \alpha \frac{dp_1}{dx} + 2\alpha p_1 + \beta \frac{dp_2}{dx} + 2\beta p_2$$

$$= \alpha \left(\frac{d}{dx} + 2\right)p_1 + \beta \left(\frac{d}{dx} + 2\right)p_2$$

$$= \alpha T(p_1) + \beta T(p_2)$$

Since T preseves arbitary linear combinations of elements of \mathcal{P} , it is a linear transformation. \Box

- (d) $T: p \to \int_0^1 p(x) dx$
 - Here we'll just use the facts that we can integrate term by term and pull constants through integral signs.

$$T(\alpha p_{1} + \beta p_{2}) = \int_{0}^{1} (\alpha p_{1} + \beta p_{2})(x) dx$$

$$= \int_{0}^{1} (\alpha p_{1}(x) + \beta p_{2}(x)) dx$$

$$= \int_{0}^{1} \alpha p_{1}(x) dx + \int_{0}^{1} \beta p_{2}(x) dx$$

$$= \alpha \int_{0}^{1} p_{1}(x) dx + \beta \int_{0}^{1} p_{2}(x) dx$$

$$= \alpha T(p_{1}) + \beta T(p_{2})$$

Since T preserves arbitary linear combinations of elements of \mathcal{P} , it is a linear transformation. \square

- 2. Suppose $f: V \to W$ is a linear transformation.
- (a) Prove that f is injective if and only if ker $(f) = \{\mathbf{0}_V\}$
 - By definition $f: V \to W$ is injective if $f(v_1) = f(v_2) \Rightarrow v_1 = v_2$. The kernel of f on the other hand is defined by $\ker(f) = \{v \in V \mid f(v) = \mathbf{0}_W\}$. $\Rightarrow \text{ Suppose } f \text{ is injective. Let } v \in \ker(f). \text{ We always have } f(\mathbf{0}_V) = \mathbf{0}_W, \text{ for } \mathbf{0}_W = 0_{\mathbb{F}} \cdot f(v) = 0_{\mathbb{F}} \cdot f(v) = 0_{\mathbb{F}} \cdot f(v)$

 \Rightarrow Suppose f is injective. Let $v \in \ker(f)$, we always have $f(\mathbf{o}_V) = \mathbf{o}_W$, for \mathbf{o}_W $f(\mathbf{o}_{\overline{V}} \cdot v) = f(\mathbf{o}_V)$. So now, by injectivity

$$f(v) = \mathbf{0}_W$$
 and $f(\mathbf{0}_V) = \mathbf{0}_W \Rightarrow v = \mathbf{0}_V$

Thus, in fact, the only vector in $\ker(f)$ is $\mathbf{0}_V$.

$$\leftarrow$$
 Suppose ker $(f) = \{\mathbf{0}_V\}$. If $f(v_1) = f(v_2)$, then

$$\begin{aligned} \mathbf{0}_W &=& f\left(v_1\right) - f\left(v_2\right) & \Rightarrow & f\left(v_1 - v_2\right) = \mathbf{0}_W & \Rightarrow & v_1 - v_2 \in \ker\left\{f\right\} = \left\{\mathbf{0}_V\right\} \\ & \Rightarrow & v_1 - v_2 = \mathbf{0}_V \\ & \Rightarrow & v_1 = v_2 \end{aligned}$$

and so f is injective.

- (b) Prove that f is surjective if and only if $\dim (\operatorname{Im} (f)) = \dim (W)$.
 - \Rightarrow This way is easy. If f is surjective then, by definition, Im(f) = W, and so $\dim(\text{Im}(f)) = \dim(W)$.

 \Leftarrow Im $(f) = \{w \in W \mid w = f(v) \text{ for some } v \in V\}$ is defined as a subspace of W. We know from way back that if a subspace of a vector space has the same dimension as the vector space in which it lives, then it must in fact coincide with the parent vector space. So

$$\dim \left(\mathrm{Im} \left(f \right) \right) = \dim \left(W \right) \ \text{ and } \ \mathrm{Im} \left(f \right) \subset W \quad \Rightarrow \quad \mathrm{Im} \left(f \right) = W \quad \Rightarrow \quad f \text{ is surjective.}$$

- (c) Prove that f is bijective if and only it $\dim(V) = \dim(W)$ and $\ker(f) = \{\mathbf{0}_V\}$.
 - \Rightarrow Suppose f is bijective. Then it is injective and surjective. Hence, $\ker(f) = \{\mathbf{0}_V\}$ by part (a) and by part (b), $\operatorname{Im}(f) = W$. From Theorem 12.1

$$\dim(V) = \dim(\operatorname{Im}(f)) + \dim(\ker(f))$$

and so

$$\dim(V) = \dim(W) + 0 \implies \dim V = \dim W$$

 \iff dim $(V) = \dim(W)$ and ker $(f) = \{\mathbf{0}_V\}$. By part (a), f is injective, and so by Theorem 12.1

$$\dim(V) = \dim(\operatorname{Im}(f)) + 0$$

and so $\text{Im}(f) \subset W$ has the same dimension as W, and so Im(f) = W, Hence f is surjective. Since f is both injective and surjective it is a bijection.

- 3. Prove that the composition $f \circ g$ of two linear transformations is a linear transformation.
 - Let $f: V \to W$ and $g: U \to V$ be linear transformations. Then $f \circ g$ is a mapping from U to W. Let $u_1, u_2 \in U$ and $\alpha, \beta \in \mathbb{F}$. Then

$$(f \circ g) (\alpha u_1 + \beta u_2) \equiv f (g (\alpha u_1 + \beta u_2))$$

$$= f (\alpha g (u_1) + \beta g (u_2)) \text{ since } g \text{ is a linear transformation}$$

$$= \alpha f (g (u_1)) + \beta f (g (u_2)) \text{ since } f \text{ is a linear transformation}$$

$$= \alpha (f \circ g) (u_1) + \beta (f \circ g) (u_2)$$

$$\Rightarrow f \circ g \text{ is a linear transformation}$$

- 4. Consider the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ $T([x_1, x_2]) = [x_1 x_2, x_1 + x_2, x_1 2x_2]$
- (a) Show that T is a linear transformation.
 - Let us write two arbitrary elements of \mathbb{R}^2 as $[x_1, x_2], [y_1, y_2]$. Then

$$\alpha [x_1, x_2] + \beta [y_1, y_2] = [\alpha x_1 + \beta y_1, \alpha y_2 + \beta y_2]$$

and so

$$T(\alpha[x_{1}, x_{2}] + \beta[y_{1}, y_{2}]) = T([\alpha x_{1} + \beta y_{1}, \alpha y_{2} + \beta y_{2}])$$

$$= [(\alpha x_{1} + \beta y_{1}) - (\alpha y_{2} + \beta y_{2}), (\alpha x_{1} + \beta y_{1}) - (\alpha y_{2} + \beta y_{2}), (\alpha x_{1} + \beta y_{1}) - 2(\alpha y_{2} + \beta y_{2})]$$

$$= \alpha[x_{1} - x_{2}, x_{1} + x_{2}, x_{1} - 2x_{2}] + \beta[y_{1} - y_{2}, y_{1} + y_{2}, y_{1} - 2y_{2}]$$

$$= \alpha T([x_{1}, x_{2}]) + \beta T([y_{1}, y_{2}])$$

Since T preserves arbitary linear combinations of elements, it is a linear transformation. \Box

(b) Find the matrix corresponding to T and the natural bases of $B = \{[1,0],[0,1]\}$ and $B' = \{[1,0,0],[0,1,0],[0,0,1]\}$ of, respectively, \mathbb{R}^2 and \mathbb{R}^3 .

• The matrix $\mathbf{T}_{BB'}$ corresponding to the linear transformation T is formed by using the components of the $T(\mathbf{e}_i)$ as the i^{th} column. We have

$$T([1,0]) = [1-0,1+0,1-2\cdot 0] = [1,1,1]$$

$$T([0,1]) = [0-1,0+1,0-2\cdot 1] = [-1,1,-2]$$

Thus,

$$\mathbf{T}_{B,B'} = \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \\ 1 & -2 \end{array} \right]$$

Notice that

$$\mathbf{T}_{B,B'} \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} x_1 - x_2 \\ x_1 + x_2 \\ x_1 - 2x_2 \end{array} \right]$$

replicates the formula for T so long as we interpret the vectors in \mathbb{R}^2 and \mathbb{R}^3 as column vectors.

- (c) What is the kernel of this linear transformation.
 - The kernel of the transformation will correpond to the null space of the matrix $\mathbf{T}_{B,B'}$; i.e, the solution set of $\mathbf{T}_{B,B'}\mathbf{x} = \mathbf{0}$. A basis for this solution set can be found using our augmented matrix method of solving such a homogeneous linear system.

$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 1 & -2 & 0 \end{bmatrix} \xrightarrow{\text{R.R.E.F.}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

So

$$Ker(T) = NullSp(\mathbf{T}_{B,B'}) = span([0,0]) = {\mathbf{0}_{\mathbb{R}^2}}$$

- (d) What is the range of this linear transformataion.
 - The range of T coincides with the span of the columns of $\mathbf{T}_{B,b'}$. To get this span, we can covert rows into columns and thereby obtain the transpose matrix $\mathbf{T}_{B,B'}^t$. A basis for the row space of $\mathbf{T}_{B,B'}^t$ will be a basis for the column space of $\mathbf{T}_{B,B'}^t$. We can obtain a basis for $RowSp\left(\mathbf{T}_{b,b'}^t\right)$ using row reduction:

$$\mathbf{T}^t_{B,B'} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ -1 & 1 & -2 \end{array} \right] \rightarrow \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & -1 \end{array} \right]$$

So

$$RowSp\left(\mathbf{T}_{B,B'}^{t}\right) = span\left(\left[1,1,1\right],\left[0,2,-1\right]\right) \quad \Rightarrow \quad ColSp\left(T_{B,B'}\right) = span\left(\left[\begin{array}{c}1\\1\\1\end{array}\right],\left[\begin{array}{c}0\\2\\-1\end{array}\right]\right)$$

Thus, vectors in the range of T will be vectors in \mathbb{R}^3 of the form

$$s[1,1,1] + t[0,2,-1] = [s,s+2t,s-t]$$

5. Let \mathcal{P}_3 be the vector space of polyonomials of degree ≤ 3 with natural basis $\{x^3, x^2, x, 1\}$. Find the matrix $T_{B,B}$ corresponding to the linear transformation

$$T: \mathcal{P}_3 \to \mathcal{P}_3$$
 , $p \to 2x \frac{d}{dx} p + p$

and the basis B (same basis for the domain and codomain of T).

• The matrix $\mathbf{T}_{B,B}$ is obtained by using the coefficients of $T(p_i)$ with respect to $B = \{p_1, p_2, p_3, p_4\} = \{x^3, x^2, x, 1\}$ as the columns of a matrix.

$$T(p_{1}) = T(x^{3}) = \left(2x\frac{d}{dx} + 1\right)x^{3} = 2x(3x^{2}) + x^{3} = 7 \cdot x^{3} + 0 \cdot x^{2} + 0 \cdot x + 0 \cdot 1 \longleftrightarrow \begin{bmatrix} 7 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$T(p_{2}) = T(x^{2}) = \left(2x\frac{d}{dx} + 1\right)x^{2} = 2x(2x) + x^{2} = 0 \cdot x^{3} + 5 \cdot x^{2} + 0 \cdot x + 0 \cdot 1 \longleftrightarrow \begin{bmatrix} 0 \\ 5 \\ 0 \\ 0 \end{bmatrix}$$

$$T(p_{3}) = T(x) = \left(2x\frac{d}{dx} + 1\right)x = 2x(1) + x = 0 \cdot x^{3} + 0 \cdot x^{2} + 3 \cdot x + 0 \cdot 1 \longleftrightarrow \begin{bmatrix} 0 \\ 0 \\ 3 \\ 0 \end{bmatrix}$$

$$T(p_{4}) = T(1) = \left(2x\frac{d}{dx} + 1\right)1 = 0 + 1 = 0 \cdot x^{3} + 0 \cdot x^{2} + 0 \cdot x + 1 \cdot 1 \longleftrightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Thus,

$$\mathbf{T}_{B,B} = \left[egin{array}{cccc} 7 & 0 & 0 & 0 \ 0 & 5 & 0 & 0 \ 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

6. Suppose $f: V \to W$ is a linear transformation and S is a subspace of W contained in Im (f). Prove that

$$f^{-1}(S) \equiv \{ v \in V \mid f(v) \in S \}$$

is a subspace of V.

• Let $v_1, v_2 \in f^{-1}(S)$. Then, by definition, there exists vectors $s_1, s_2 \in S$ such that $f(v_1) = s_1$ and $f(v_2) = s_2$. Now let $\alpha, \beta \in \mathbb{F}$ and consider $f(\alpha v_1 + \beta v_2)$. We have

$$f(\alpha v_1 + \beta v_2) = \alpha f(v_1) + \beta f(v_2)$$

$$= \alpha s_1 + \beta s_2$$

$$\in S \text{ since } S \text{ is a subspace of } W$$

Thus, $\alpha v_1 + \beta v_2$ is in $f^{-1}(S)$, and so $f^{-1}(S)$ is a subset of V that is closed under linear combinations; hence $f^{-1}(S)$ is a subspace of V.

7. Let S be a subspace of a vector space V over a field \mathbb{F} and let V/S be the corresponding quotient space:

$$V/S := \{v + S \mid v \in V\}$$

where

$$v + S := \{v' \in V \mid v' = v + s \text{ for some } s \in S\}$$

Let addition and scalar multiplication of elements of V/S be defined by

+ :
$$V/S \times V/S \rightarrow V/S$$
 ; $(v+S) + (w+S) := (v+w+S)$
* : $\mathbb{F} \times V/S \rightarrow V/S$: $\lambda(v+S) := (\lambda v+S)$

Show that V/S is a vectors space over \mathbb{F} (i.e., verify all 8 axioms for a vector space).

• - Commutativity of addition:

$$(v+S)+(w+S) \equiv (v+w)+S$$
 by definition of addition in V/S
= $(w+v)+S$ because addition is commutative in V
 $\equiv (w+S)+(v+S)$ by definition of addition in V/S

- Associativity of addition:

$$((v+S)+(w+S))+(u+S) \equiv ((v+w)+S)+(u+S)$$

$$\equiv ((v+w)+u)+S$$

$$= (v+(w+u))+S \text{ by associativity of addition in } V$$

$$\equiv (v+S)+((w+u)+S)$$

$$\equiv (v+S)+((w+S)+(u+S))$$

- Existence of additive identity.

The additive identity in V/S is $0_V + S = S$. We have

$$(v+S) + (0_V + S) = (v+0_V) + S = v + S$$

Existence of additive inverses.

Let $v + S \in V/S$. Then -v + S is also in V/S and

$$(v+S) + (-v+S) = (v+(-v)) + S = 0_V + S = 0_{V/S}$$

- Compatibility of scalar multiplication.

$$\begin{array}{lll} (\lambda\mu)\cdot(v+S) & \equiv & ((\lambda\mu)\,v+S) \\ & = & (\lambda\,(\mu v)+S) & \text{compatibility of scalar multiplication in } V \\ & \equiv & \lambda\cdot(\mu v+S) \\ & = & \lambda\cdot(\mu\cdot(v+S)) \end{array}$$

- Distributivity of addition of scalars

$$(\lambda + \mu) \cdot (v + S) \equiv (\lambda + \mu) v + S$$

$$= (\lambda v + \mu v) + S \quad \text{distributivity of addition of scalars in } V$$

$$\equiv (\lambda v + S) + (\mu v + S)$$

$$\equiv \lambda \cdot (v + S) + \mu \cdot (v + S)$$

- Distributivity of scalar multiplication over vector addition

$$\lambda \cdot ((v+S) + (u+S)) \equiv \lambda \cdot ((v+u) + S)$$

$$\equiv (\lambda (v+u) + S)$$

$$= (\lambda v + \lambda u) + S$$

$$= (\lambda v + S) + (\lambda u + S)$$

$$\equiv \lambda \cdot (v+S) + \lambda \cdot (u+S)$$

 $-1_{\mathbb{F}}$ acts as identity operator w.r.t. scalar multiplication.

$$1_{\mathbb{F}} \cdot (v+S) \equiv (1_{\mathbb{F}} \cdot v) + S$$
$$= v+S$$