LECTURE 11

Linear Transformations and Matrices

1. Matrix Multiplication

We have put this off long enough; let us now define matrix multiplication.

Let Mat,, n, (F) be the set of n x m matrices with entries in F. As usual, we will write a typical element
of Maty, m (F) as an array with n rows and m columns
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DEFINITION 11.1. Let A € Mat, , (F) and let B € Mat,, ¢ (F). The matriz product AB is defined as the
matriz in Mat, ¢ (F) with entries

m
(AB),; => awby; , 1<i<n , 1<j<¢
k=1

REMARK 11.2. Another formulation of the rule for matrix multiplication is this: the (ij)th element of the
matrix product AB is the dot product for the i** row vector of A with the j** column vector of B.

Recall that the set Maty, ,, (F) is naturally a vector space over F with scalar multiplication and vector
addition defined by

()\A)” = )\aij 5 1§
(A—FB)ij = a;; + by ) 1<

THEOREM 11.3. Let A,C € Mat,, ,, (F), B,D € Mat,, ¢ (F) and let o, 3 € F.

e A(aB+ D) =0a(AB)+ 5(AD)
e (t/A+3C)B=a(AB)+ 3(CB)
COROLLARY 11.4. Let A be an n X m matriz. Then for each £ = 1,2,3,..., A defines a family of linear

transformations Ly : Maty, ¢ (F) — Mat,, ¢ (F) via left multiplication
Maty,(F)>B +~— AB € Mat, ,(F)

and for each k = 1,2,3,..., A defines a family of linear transformations Ry : Maty ., (F) — Maty n (F)
via right multiplication
Maty, p, (F) 3B +— BA € Maty., (F)

REMARK 11.5. Because we can think of a vectors in F™ either as m x 1 matrices (column vectors) or as
1 x m matrices (row vectors), we actually have two possibilities for implementing matrix multiplication on
F™. This ambiguity is usually resolved by adopting the convention that elements of F™ correspond to m x 1
matrices.
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2. Linear Transformations, Bases, and Matrix Multiplication

Let V and W be finitely generated vector spaces and let T': V' — W be a linear transformation from V to
W. Since V and W are finitely generated vector spaces they both have bases. Let B = {vy,...,v,,} be a
basis for V and let B’ = {wq,...,w,} be a basis for W. From the data T, B, and B’ we can form a matrix
in Matg (n,m); for each basis vector v; € V' gets mapped by T to a vector T (v;) € W, which in turn must
be expressible in terms of the basis B’ of W. Say

T (v;) = A(li)wl + )\gi)wg R )‘g)wn
Then a more general vector v = ayvy + - -+ + Gy, Uy, gets mapped to

Tw) = T(avr+- 4 amvm)
= aT(v) 4+ 4 anT (vm) because T is a linear transformation
= al)\(ll)wl 4+ 4 al)\g)wn
+a2)\§2)w1 + -+ ag)\f)wn
+am)\§m)w1 + oot apA ™,
= (War+ a0z + -+ AMan ) w)

+ ()\él)m +2APag 4+ + )\gm)am) wo
_|_ cen
+ (Ag)m +2Pag + -+ /\Slm)am> wn,

Put another way, a vector v € V with coordinate vector [ay, ..., a;] € F™ with respect to the basis B C V
gets mapped to T (v) which has coordinate vector

MV 2P az + -+ A AN az + AP a3 4 A, A+ AP+ A

with respect to the basis B’ = {wy,...,w,} of W. Let us now write the coordinate vector [a,...,a;] as a
m X 1 matrix, and coordinate vector of T'(v) as an n x 1 matrix. Then we have

ay )\gl)al + )\52)&2 + -+ Ai’")am )\9) )\52) e Aﬁm) ay

a )\gl)ag + )\EQ)ag +o 4 /\gm)am )\gl) )\52) e )\ém) as
(1) L : - : : - : :

m AVay +APas + -+ A Man, AL A@ M am

where on the right we have simply recognized that the coordinate vector for T' (v) can also be obtained via
a matrix multiplication.

Let me summarize this result. Let B = {v1,...,v,} be a basis for V', let B’ = {wy,...,w,} be a basis for
W,and let T': V' — W be a linear transformation. Form an n x m matrix T g/ by utilizing the coordinate
vectors for T' (v;) with respect to B’ as columns. Then a vector v € V' with coordinate vector vg € F™ with
respect to B gets mapped by T to the vector in W with coordinate vector Tg p'vp.

The upshot of this is: once you coordinatize your vector spaces, a linear transformation is always imple-
mentable by matriz multiplication.
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3. The Kernel and Image of a Linear Transformation

Given a linear transformation 7' : V' — W, we have two associated subspaces of, respectively, the domain
V and the codomain W:

ker (T) = {veV|T(v)=0w}
range(T) = {weW |w=T(v) for somev eV}

How does one compute these subspaces? Well, as is typical of abstract vector spaces, there little we can
calculate without first positing some bases. So let B = {vy,...,v,,} be a basis for V and let B’ =
{w1,...,wy,} be a basis for W. As we say in the preceding section, a linear transformation T : V — W
is equivalent to defining a certain matrix multiplication that sends coordinate vectors for V' to coordinate
vectors for W. Schematically, the way this works is

veV T Tw)eW

4 NN

vp € ™ Tgp Tppvp € F"
B BB BB'VB
where T pp is the n x m matrix formed by using the coordinate vectors (w.r.t. B’) of each T (v;) as columns.

Because of the tight one-to-one correspondence between vectors and their coordinate vectors, we should be
able to identify ker (T") with a certain subspace of F™ and range (T') with a certain subspace of F". Indeed,

T (U) =0 <~ Tppve = O
which tells us that
(2) ker (T) <= NullSp(Tpp/) = solution set of Tgpx =0

Also, if we denote the components of vg as [a1,...,a,,] and the columns of Tgp/ as ¢y, ..., ¢y, (still with
¢; = coordinate vector for T (v;) with respect to B’), then vg = [a1]

Tpp'vp =aicy +azCa + -+ amcn,
Thus, as we let vy vary over F™, the vectors T gp/vp run over the span of the columns of Tgp/; and so

(3) range (T') <= ColSp(Tpp’)

Let’s restate this result as a theorem:

THEOREM 11.6. Suppose V and W are finitely generated vector spaces and T : V- — W is a linear transfor-
mation. Let B = {b1,...,bn} be a basis for V. and let B' = {b},...,b),} be a basis for W. Letig:V — F™
and igr = W — " be the associated coordinatization isomorpohisms. Finally, let Ar g p/ be associated
n X m matriz of whose columns are given by

Ci:iB/(T(bi))EFn , 1=1,....m

Then

(i) The linear transformation ip OToz']g1 :F™ — F™ coincides with matriz multiplication by At g pr.

(ii) ker (T) = 2731 (NullSp (A1, B)), where NullSp (Ar g ,p) = the solution set of Ap g px =0 in

Fm™.

(iii) Im (T) = i]_gl (ColSp (Ar,,p)) = span (T (b1,),...,T (bm)).
In addition, we also have
COROLLARY 11.7. If T : V. — W s a linear transformation between finitely generated vector spaces, then

dim (V) = ker (T') + dim Im (T")
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Proof. From the theorem,

ker (T) = iz" (NullSp (At 5 p))
Since ip is an isomorphism, ker (T') and the solution set of Ay p/p/x = 0 must have the same dimension.
On the other, by the theorem we also have that Im (T') is isomorphic to ColSp (Ar g, p/) and so Im (T') must
have the same dimension as the column space of Ar g pr. In other words, dim (Im (T")) = rank (A7 B B’).
But now from Corollary 8.4 of Lecture 8 we know

(4) dim (solution set of Ap g p'x = 0) = # columns of Ar g g — rank (At p’)
Using
# columns of Ay g pr = # basis vectors in B =dimV
rank (Ar B p) dim (ColSp (A, p’)) = dimIm (T')
dim (solution set of Ap p prx=0) = dim (ker (7))
We get from (4)

dim (ker (T')) = dim V' — dim (Im (7))
and the statement of the corollary follows.

ExXAMPLE 11.8. Find the kernel and image of the following linear transformation acting on polynomials of
degree < 3
dp

T(p)=z-L 2
() T =2

Using the standard basis B = {IES, 2 x, 1} for the vector space of polynomial of degree 3 we see

d
3 3 _ 3_ 9.3 _
T T (xdx - 2) x> = 3x°—22°=z3 — [1,0,0,0]
d
2 2 _ 2 6.2 _
T T (xdw—Z)x = 2¢°—-2z"=0 — [0,0,0,0]
x T xi—2 x = rz—2x=—-x — [0,0,—1,0]
—_— dl' - - ] )
d
1 T (xde)x = 0-2=-2 — [0,0,0,—2]
and so
1 0 0 0
0 0 O 0
Tes=19 0 -1 o
00 0 =2
From this is is fairly obvious that
0
NullSp(Tpp) = span (1) +——  span (332)
0
1 0 0
ColSp(Tpp) = span 0 0 0 +——  span (333 T 1)
O b 1 ) 0 b b
0 0 1
and so
ker (T) = span (xQ)

range (T) = span (xg,x,l)



