
LECTURE 11

Linear Transformations and Matrices

1. Matrix Multiplication

We have put this off long enough; let us now define matrix multiplication.

Let Matn,m (F) be the set of n ×m matrices with entries in F. As usual, we will write a typical element
of Matn,m (F) as an array with n rows and m columns

A =

 a11 · · · a1m
...

. . .
...

an1 · · · anm


Definition 11.1. Let A ∈ Matn,m (F) and let B ∈ Matm,` (F). The matrix product AB is defined as the
matrix in Matn,` (F) with entries

(AB)ij =

m∑
k=1

aikbkj , 1 ≤ i ≤ n , 1 ≤ j ≤ ` .

Remark 11.2. Another formulation of the rule for matrix multiplication is this: the (ij)
th

element of the
matrix product AB is the dot product for the ith row vector of A with the jth column vector of B.

Recall that the set Matn,m (F) is naturally a vector space over F with scalar multiplication and vector
addition defined by

(λ ·A)ij = λaij , 1 ≤ i ≤ n , 1 ≤ j ≤ m
(A + B)ij = aij + bij , 1 ≤ i ≤ n , 1 ≤ j ≤ m

Theorem 11.3. Let A,C ∈Matn,m (F), B,D ∈Matm,` (F) and let α, β ∈ F.

• A (αB + βD) = α (AB) + β (AD)
• (αA + βC)B = α (AB) + β (CB)

Corollary 11.4. Let A be an n ×m matrix. Then for each ` = 1, 2, 3, . . . , A defines a family of linear
transformations L` : Matm,` (F)→Matn,` (F) via left multiplication

Matm,` (F) 3 B 7−→ AB ∈Matn,` (F)

and for each k = 1, 2, 3, . . . , A defines a family of linear transformations Rk : Matk,n (F) → Matk,m (F)
via right multiplication

Matk,n (F) 3 B 7−→ BA ∈Matk.m (F) .

Remark 11.5. Because we can think of a vectors in Fm either as m × 1 matrices (column vectors) or as
1×m matrices (row vectors), we actually have two possibilities for implementing matrix multiplication on
Fm. This ambiguity is usually resolved by adopting the convention that elements of Fm correspond to m×1
matrices.
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2. Linear Transformations, Bases, and Matrix Multiplication

Let V and W be finitely generated vector spaces and let T : V →W be a linear transformation from V to
W . Since V and W are finitely generated vector spaces they both have bases. Let B = {v1, . . . , vm} be a
basis for V and let B′ = {w1, . . . , wn} be a basis for W . From the data T , B, and B′ we can form a matrix
in MatF (n,m); for each basis vector vi ∈ V gets mapped by T to a vector T (vi) ∈W , which in turn must
be expressible in terms of the basis B′ of W . Say

T (vi) = λ
(i)
1 w1 + λ

(i)
2 w2 + · · ·+ λ(i)n wn

Then a more general vector v = a1v1 + · · ·+ amvm gets mapped to

T (v) = T (a1v1 + · · ·+ amvm)

= a1T (v1) + · · ·+ amT (vm) because T is a linear transformation

= a1λ
(1)
1 w1 + · · ·+ a1λ

(1)
n wn

+a2λ
(2)
1 w1 + · · ·+ a2λ

(2)
n wn

+ · · ·
+amλ

(m)
1 w1 + · · ·+ amλ

(m)
n wn

=
(
λ
(1)
1 a1 + λ

(2)
1 a2 + · · ·+ λ

(m)
1 am

)
w1

+
(
λ
(1)
2 a1 + λ

(2)
2 a2 + · · ·+ λ

(m)
2 am

)
w2

+ · · ·
+
(
λ(1)n a1 + λ(2)n a2 + · · ·+ λ(m)

n am

)
wn

Put another way, a vector v ∈ V with coordinate vector [a1, . . . , am] ∈ Fm with respect to the basis B ⊂ V
gets mapped to T (v) which has coordinate vector[

λ
(1)
1 a1 + λ

(2)
1 a2 + · · ·+ λ

(m)
1 am, λ

(1)
1 a2 + λ

(2)
2 a2 + · · ·+ λ

(m)
2 am, . . . , λ

(1)
n a1 + λ(2)n a2 + · · ·+ λ(m)

n am

]
with respect to the basis B′ = {w1, . . . , wn} of W . Let us now write the coordinate vector [a1, . . . , am] as a
m× 1 matrix, and coordinate vector of T (v) as an n× 1 matrix. Then we have

(1)


a1
a2
...
am

 T−−−−−−−→


λ
(1)
1 a1 + λ

(2)
1 a2 + · · ·+ λ

(m)
1 am

λ
(1)
1 a2 + λ

(2)
2 a2 + · · ·+ λ

(m)
2 am

...

λ(1)n a1 + λ(2)n a2 + · · ·+ λ(m)
n am

 =


λ
(1)
1 λ

(2)
1 · · · λ

(m)
1

λ
(1)
2 λ

(2)
2 · · · λ

(m)
2

...
...

. . .
...

λ(1)n λ(2)n · · · λ(m)
n




a1
a2
...
am


where on the right we have simply recognized that the coordinate vector for T (v) can also be obtained via
a matrix multiplication.

Let me summarize this result. Let B = {v1, . . . , vm} be a basis for V , let B′ = {w1, . . . , wn} be a basis for
W , and let T : V →W be a linear transformation. Form an n×m matrix TB,B′ by utilizing the coordinate
vectors for T (vi) with respect to B′ as columns. Then a vector v ∈ V with coordinate vector vB ∈ Fm with
respect to B gets mapped by T to the vector in W with coordinate vector TB,B′vB .

The upshot of this is: once you coordinatize your vector spaces, a linear transformation is always imple-
mentable by matrix multiplication.



3. THE KERNEL AND IMAGE OF A LINEAR TRANSFORMATION 3

3. The Kernel and Image of a Linear Transformation

Given a linear transformation T : V → W , we have two associated subspaces of, respectively, the domain
V and the codomain W :

ker (T ) = {v ∈ V | T (v) = 0W }
range (T ) = {w ∈W | w = T (v) for some v ∈ V }

How does one compute these subspaces? Well, as is typical of abstract vector spaces, there little we can
calculate without first positing some bases. So let B = {v1, . . . ,vm} be a basis for V and let B′ =
{w1, . . . ,wn} be a basis for W . As we say in the preceding section, a linear transformation T : V → W
is equivalent to defining a certain matrix multiplication that sends coordinate vectors for V to coordinate
vectors for W . Schematically, the way this works is

v ∈ V T−−−−→ T (v) ∈W
↗↙ ↘↖

vB ∈ Fm TBB′
−−−−−−−→ TBB′vB ∈ Fn

where TBB′ is the n×m matrix formed by using the coordinate vectors (w.r.t. B′) of each T (vi) as columns.

Because of the tight one-to-one correspondence between vectors and their coordinate vectors, we should be
able to identify ker (T ) with a certain subspace of Fm and range (T ) with a certain subspace of Fn. Indeed,

T (v) = 0 ⇐⇒ TBB′vB = 0Fn

which tells us that

(2) ker (T ) ⇐⇒ NullSp (TBB′) ≡ solution set of TBB′x = 0

Also, if we denote the components of vB as [a1, . . . , am] and the columns of TBB′ as c1, . . . , cm (still with
ci = coordinate vector for T (vi) with respect to B′), then vB = [a1]

TBB′vB = a1c1 + a2c2 + · · ·+ amcm

Thus, as we let vB vary over Fm, the vectors TBB′vB run over the span of the columns of TBB′ ; and so

(3) range (T ) ⇐⇒ ColSp (TBB′)

Let’s restate this result as a theorem:

Theorem 11.6. Suppose V and W are finitely generated vector spaces and T : V →W is a linear transfor-
mation. Let B = {b1, . . . , bm} be a basis for V and let B′ = {b′1, . . . , b′n} be a basis for W . Let iB : V → Fm

and iB′ = W → Fn be the associated coordinatization isomorpohisms. Finally, let AT,B,B′ be associated
n×m matrix of whose columns are given by

ci = iB′ (T (bi)) ∈ Fn , i = 1, . . . ,m

Then

(i) The linear transformation iB′ ◦T ◦ i−1B : Fm → Fn coincides with matrix multiplication by AT,B,B′ .

(ii) ker (T ) = i−1B (NullSp (AT,B,B′)), where NullSp (AT,B,B′) ≡ the solution set of AT,B,B′x = 0 in
Fm.

(iii) Im (T ) = i−1B (ColSp (AT,B,B′)) = span (T (b1, ) , . . . , T (bm)).

In addition, we also have

Corollary 11.7. If T : V →W is a linear transformation between finitely generated vector spaces, then

dim (V ) = ker (T ) + dim Im (T )
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Proof. From the theorem,
ker (T ) = i−1B (NullSp (AT,B,B′))

Since iB is an isomorphism, ker (T ) and the solution set of AT,B′B′x = 0 must have the same dimension.
On the other, by the theorem we also have that Im (T ) is isomorphic to ColSp (AT,B,B′) and so Im (T ) must
have the same dimension as the column space of AT,B,B′ . In other words, dim (Im (T )) = rank (AT,B,B′).
But now from Corollary 8.4 of Lecture 8 we know

(4) dim (solution set of AT,B,B′x = 0) = # columns of AT,B,B − rank (AT,B,B′)

Using

# columns of AT,B,B′ = # basis vectors in B = dimV

rank (AT,B,B′) = dim (ColSp (AT,B,B′)) = dim Im (T )

dim (solution set of AT,B,B′x = 0) = dim (ker (T ))

We get from (4)
dim (ker (T )) = dimV − dim (Im (T ))

and the statement of the corollary follows.

Example 11.8. Find the kernel and image of the following linear transformation acting on polynomials of
degree ≤ 3

T (p) = x
dp

dx
− 2p

Using the standard basis B =
{
x3, x2, x, 1

}
for the vector space of polynomial of degree 3 we see

x3 T−−−−→

(
x
d

dx
− 2

)
x3 = 3x3 − 2x3 = x3 → [1, 0, 0, 0]

x2 T−−−−→

(
x
d

dx
− 2

)
x2 = 2x2 − 2x2 = 0 → [0, 0, 0, 0]

x T−−−−→

(
x
d

dx
− 2

)
x = x− 2x = −x → [0, 0,−1, 0]

1 T−−−−→

(
x
d

dx
− 2

)
x = 0− 2 = −2 → [0, 0, 0,−2]

and so

TBB =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −2


From this is is fairly obvious that

NullSp (TBB) = span


0
1
0
0

 ←→ span
(
x2
)

ColSp (TBB) = span




1
0
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 ←→ span

(
x3, x, 1

)
and so

ker (T ) = span
(
x2
)

range (T ) = span
(
x3, x, 1

)


