LECTURE 9

Hyperplanes

Let V be a finitely generated vector space over a field F. Today we will focus our attention on a special class of subsets of V. These subsets will not in general be subspaces, but they arise quite naturally in linear algebra and have a lot of nice properties.

Definition 9.1. Let V be a vector space over a field F, let S be a subspace of V and let $p \in V$. Let

$$M_{p, S} := \{ p + s \mid s \in S \}$$

We shall refer to such a subset as a **linear submanifold** of V. The subspace S is called the **directing subspace** of $M_{p, S}$. The **dimension** of $M_{p, S}$ is defined as the dimension of S.

Remark 9.2. The notion of a manifold is actually more germane to differential geometry than linear algebra, in the geometric setting the notion of a linear manifold is akin to the notion of a linear function in Calculus - it's so simple that it's not worth discussing except as a simplifying limit.

However, because we are not discussing differential geometry in this course, I don’t see much point in mentioning manifolds. What I think would be more helpful will be to view sets of the form $M_{p, S}$ as generalizations of lines and planes in \mathbb{R}^3. Indeed, you can generate a line in \mathbb{R}^3 by starting at a particular point $p \in \mathbb{R}$ and then heading off an arbitrary distance d (forwards and backwards) along a particular direction v: that is to say

$$\text{line} = \text{set of the form } \{ p + tv \mid p, v \in \mathbb{R}^3, t \in \mathbb{R} \}$$

Since the vectors $\{tv \mid t \in \mathbb{R} \}$ constitute the span of v, such a line is a linear submanifold of \mathbb{R}^3 as defined above. Similarly, a plane in \mathbb{R}^3 is formed by starting at a particular point and then heading an arbitrary distance in two possible directions; i.e. a subset of \mathbb{R}^3 of the form

$$\text{plane} = \{ p + su + tv \mid s, t \in \mathbb{R} \}$$

$$= \{ p + s \mid s \in \text{span} (u, v) \}$$

To underscore this simple geometric picture, I shall henceforth refer to linear submanifolds of a vector space V as a **hyperplane** in V.

Definition 9.3.

Notation 9.4 (common but abusive notation). Let V be a vector space. If S is a subspace of a vector space V, and b is a point of V we shall write $b + S$ for the corresponding hyperplane in V. (What’s abusive about this is that you can’t really add a subspace to a vector; on the other hand, if you interpret this expression as adding every vector in S to b then it does kind of make sense.)

I note also that we have already run into hyperplanes in two particular contexts. In Lecture 6, I defined quotient spaces V/S, S being some subspace of a vector space V, as the collection of sets of the form $p_0 + S$ ($= [p_0]_S$ in the notation of Lecture 6).

In Theorem 7.7 of Lecture 7, we saw hyperplanes arise as the solution sets of linear systems.
Theorem 9.2. (rephrased) Suppose $Ax = b$ is an $n \times m$ linear system. Then the solution set of this linear system can be expressed as

$$ p_0 + S = \{ p_0 + s \mid s \in S \} $$

where p_0 is any particular solution of $Ax = b$ and S is the solution set of $Ax = 0$.

The first thing to point out about hyperplanes is that in general they are not subspaces. Here is a simple counter-example. Let $V = \mathbb{R}^2$, $p_0 = [1,0]$ and let $S = \text{span}([0,1])$. Then

$$ p_0 + S = \{ [1, y] \mid y \in \mathbb{R} \} $$

which cannot be a subspace of \mathbb{R}^2 since it does not contain the zero vector in \mathbb{R}^2.

Theorem 9.2 told us how to view the solution set of homogeneous linear system $Ax = 0$. The following lemma provides a converse to this result.

Theorem 9.5. Let $b + S$ be a hyperplane in a vector space V. Then

$$ S = \{ v \in V \mid v = r - q , \ r, q \in b + S \} $$

Proof. Let

$$ \tilde{S} = \{ v \in V \mid v = r - q , \ r, q \in b + S \} $$

Suppose $v \in \tilde{S}$. Then there exists $r = b + s_1$ and $q = b + s_2$ in $b + S$ such that

$$ v = r - q = (b + s_1) - (b + s_2) = s_1 - s_2 \in S $$

and so every element $v \in \tilde{S}$ is also a vector of S.

Suppose on the other hand that $s \in S$, then we can always write

$$ s = s + b - b = (b + s) - (b + 0) $$

which displays s as an element of \tilde{S}. We conclude $\tilde{S} = S$ and thus prove the theorem. \qed

Theorem 9.2 told us how to view the solution set of homogeneous $n \times m$ linear system is subspace of \mathbb{F}^m. The following lemma provides a converse to this result.

Lemma 9.6. Let S be an r-dimensional subspace of a vector space V of dimension m. Then there exists a set of $m - r$ homogeneous linear equations in m unknowns whose solution set is exactly S.

Let $\{b_1, \ldots, b_r\}$ be a basis for S. Consider the solution space S^* of

$$ b_1 \cdot x = 0 $$
$$ b_2 \cdot x = 0 $$
$$ \vdots $$
$$ b_r \cdot x = 0 $$

We first note that S^* is not likely to coincide with S, simply because for example, $b_1 \in S$ but $b_1 \cdot b_1 \neq 0$. On the other hand, since the vectors b_i are all linearly independent, it follows that the coefficient matrix A for this linear system has rank r (since the row space of A will be span of the r linearly independent vectors b_1, \ldots, b_r). So the solution space S^* of $Ax = 0$ will be of dimension $m - r$. Let $\{c_1, \ldots, c_{m-r}\}$ be the basis for the S^* and consider the system

$$ c_1 \cdot x = 0 $$
$$ \vdots $$
$$ c_{m-r} \cdot x = 0 $$

Let S^{**} denote the solution set of $c_1 \cdot x = 0$. Clearly, each b_i will be a solution of this system, and thus so will any linear combination of the vectors b_i, and thus, the entire subspace S lie in the solution set of $c_1 \cdot x = 0$. On the other hand, Since the vectors c_1, \ldots, c_{m-r} are linearly independent, it is clear that the rank of this

\[1\] That the solution set of a homogeneous $n \times m$ linear system $Ax = 0$ is actually a subspace of \mathbb{F}^m is the content of Theorem 9.2.
linear system is \(m - r \) and so solution set of dimension \(m - (m - r) = r \). But we’ve seen that if a subspace has same dimension as the vector space containing it, the subspace must be the whole vector space. Since \(S \subset S^{**} \) and \(\dim(S) = \dim(S^{**}) \) we conclude that \(S \) coincides with the solution set \(S^{**} \) of (*) \(\square \).

Example 9.7. Find a homgeneous linear system whose solution set coincides with the span of \([1, 0, 1] \) and \([1, 1, 0]\).

- We first find a basis for the solution set of
 \[
 0 = [1, 0, 1] \cdot x = x_1 + x_3
 \]
 \[
 0 = [1, 1, 0] \cdot x = x_1 + x_2
 \]

 The augmented matrix for this system is
 \[
 \begin{bmatrix}
 1 & 0 & 1 & 0 \\
 1 & 1 & 0 & 0
 \end{bmatrix} \rightarrow \begin{bmatrix}
 1 & 0 & 1 & 0 \\
 0 & 1 & -1 & 0
 \end{bmatrix}
 \]

 and so the general solution will be
 \[
 x_1 = -x_3 \\
 x_2 = x_3
 \]

 or
 \[
 \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
 \end{pmatrix} = \begin{pmatrix}
 -x_3 \\
 x_3 \\
 1
 \end{pmatrix}
 \]

 Thus, the solution space has basis \(c_1 = [-1, 1, 1] \). The desired homogeneous linear system will be
 \[
 [-1, 1, 1] \cdot x = 0
 \]

Theorem 9.8. A necessary and sufficient condition for a subset \(M \) of vectors to form a hyperplane in \(F^n \) of dimension \(r \) is that \(M \) be the set of solutions of a system of \(m - r \) equations in \(m \) unknowns whose coefficient matrix has rank \(r \).

Proof. How a solution set of a linear system constitutes a hyperplane was explained in at the start of this lecture. To see that every hyperplane \(b + S \) corresponds to a linear system, we just observe that by Lemma 10.5 the directing subspace \(S \) can be viewed as the solution set an \((m - r) \times m \) linear system \(Ax = 0 \). Let

\[
\tilde{b} = Ab
\]

Then any \(b + s \) vector in \(b + S \) will satisfy

\[
A(b + s) = Ab + 0 = \tilde{b}
\]

This shows that the solution of

\[
(*)
\]

will contain \(b + S \). On the other hand, by construction \(y = b \) is a solution of \((*) \) and by Theorem 7.7, any other solution of \(Ay = \tilde{b} \) will be of the form

\[
b + \text{some solution of } Ax = 0
\]

and so any solution \(y \) of \((*) \) will be of the form

\[
y = b + s , \quad s \in S
\]

Therefore \(b + S \) will coincide with the solutions of \((*) \). \(\square \)

Finally, let me describe an algorithm by which one can identify a linear system whose solution set is a given hyperplane.

We have see above that if we had a hyperplane in \(\mathbb{R}^m \) which is also a subspace \(S \) of \(\mathbb{R}^m \), then we could construct a corresponding equation set as follows:
9. HYPERPLANES

- find a basis \{v_1, \ldots, v_k\} for \(S\)
- find a basis \{u_1, \ldots, u_\ell\} for the solution set of the linear system

\[
\begin{align*}
v_1 \cdot x &= 0 \\
v_2 \cdot x &= 0 \\
&\vdots \\
v_k \cdot x &= 0
\end{align*}
\]

- The equations that cut out the subspace \(S\) will

\[
\begin{align*}
u_1 \cdot x &= 0 \\
u_2 \cdot x &= 0 \\
&\vdots \\
u_\ell \cdot x &= 0
\end{align*}
\]

Now suppose we have a hyperplane in \(\mathbb{R}^m\) of the form

\[
H = p_0 + S \equiv \{p_0 + s \mid s \in S\}
\]

\(S\) being some subspace of \(\mathbb{R}^m\). Suppose also that we have followed the algorithm above and found \(\ell\) vectors \(u_1, \ldots, u_\ell\) such that

\[
s \in S \iff u_i \cdot s = 0
\]

Then each vector in \(H\) will satisfy

\[
u_i \cdot (p_0 + s) = u_i \cdot p_0 + u_i \cdot s = u_i \cdot p_0 + 0 = u_i \cdot p_0, \quad i = 1, \ldots, \ell
\]

And so the linear equations whose solution set is the hyperplane \(H = p_0 + S\) will be

\[
\begin{align*}
u_1 \cdot x &= u_1 \cdot p_0 \\
u_2 \cdot x &= u_2 \cdot p_0 \\
&\vdots \\
u_\ell \cdot x &= u_\ell \cdot p_0
\end{align*}
\]