LECTURE 3

Dimension and Bases

In the preceding lecture, we introduced the notion of a subspace of a vector space and an easy way to construct subspace; namely, by considering the set of all possible linear combinations of a set of vectors: if \(\{v_1, v_2, \ldots, v_k\} \) is a set of vectors, then

\[
\text{span}_F (v_1, \ldots, v_k) := \{ \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k \mid \alpha_1, \alpha_2, \ldots, \alpha_k \in F \}
\]

will be a subspace. We may also refer to \(\text{span}_F (v_1, \ldots, v_k) \) as the subspace generated by \(v_1, \ldots, v_k \).

We noted that such a subspace may be generated may different ways; the exact same subspace being produced for different choices of \(v_1, \ldots, v_k \). In order to make the presentation of a vector in a subspace as simple as possible it made sense to try to work with as few generators as possible. This lead us to the following definition

Definition 3.1. A set of vectors is **linearly dependent** if an equation of the form

\[
\alpha_1 v_1 + \cdots + \alpha_k v_k = 0_v
\]

can be satisfied without setting all the coefficients \(\alpha_1, \ldots, \alpha_k \) equal to 0.

This definition is related to the problem of finding a minimal set of generators by

Proposition 3.2. \(\text{span}_F (v_1, \ldots, v_k) = \text{span}_F (v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k) \) if and only if there is a dependence relation amongst the vectors \(v_1, \ldots, v_k \) for which the coefficient \(\alpha_i \) of \(v_1 \) is non-zero.

So anytime there is a viable dependence relation we can toss out a generator without changing the nature of the subspace generated. When we there are no more viable dependence relations, this procedure terminates. The final minimal set of generators are then **linearly independent** since dependence relations amongst the vectors no longer exist.

We now turn to the questions of how many generators do we end up with; does this number depend on the vectors that we start with, or on the choices we make in removing superfluous generators.

Theorem 3.3. Let \(S \) be a subspace of a vector space \(V \) over a field \(F \). Suppose \(S \) is generated by \(n \) vectors \(v_1, \ldots, v_n \). Let \(\{w_1, \ldots, w_m\} \) be a set of \(m \) vectors in \(S \) with \(m > n \). Then the vectors \(\{w_1, \ldots, w_m\} \) are linearly dependent.

Proof. We will do a proof by induction.

Suppose \(n = 1 \). Then each element of \(S \) is of the form \(\lambda v_1 \) for some \(\lambda \in F \). So there must be a choice of scalars \(\lambda_1, \ldots, \lambda_m \) so that

\[
w_i = \lambda_i v_1 , \quad i = 1, \ldots, m
\]

But then

\[-\lambda v_1 + w_1 = 0_v
\]

is a dependence relation amongst the \(w_1, \ldots, w_m \) and so \(\{w_1, \ldots, w_m\} \) are linearly dependent.
Now assume the statement is true for \(n = N - 1 \). Write each \(w_i, i = 1, \ldots, m > N \), as

\[
 w_i = \sum_{j=1}^{N} \alpha_{ij} v_j
\]

Case 1: all \(\alpha_{iN} = 0 \). In this situation each \(w_i \) lies in the span of the first \(N - 1 \) \(v_i \), and so the conclusion that \(\{w_1, \ldots, w_m\} \) are linearly dependent is affirmed by the induction hypothesis.

Case 2: At least one \(\alpha_{iN} \neq 0 \). By, if necessary, reordering the \(v_i \), we can assume that \(\alpha_{1N} \neq 0 \). Now consider

\[
 w_2 = \frac{\alpha_{2N}}{\alpha_{1N}} w_1
\]

The coefficient of \(v_N \) is this expression is, by construction, equal to 0 (\(\neq \)). Similarly, the vectors

\[
 w_3 - \frac{\alpha_{3N}}{\alpha_{1N}} w_1
\]

\[
 \vdots
\]

\[
 w_m = \frac{\alpha_{mN}}{\alpha_{1N}} w_1
\]

all have 0 (\(\neq \)) component along \(v_N \). Thus, the \(m - 1 \) vectors \(w_2 - \frac{\alpha_{2N}}{\alpha_{1N}} w_1, \ldots, w_m - \frac{\alpha_{mN}}{\alpha_{1N}} w_1 \), all belong to the subspace generated by \(v_1, \ldots, v_{N-1} \). Since \(m > N \) implies \(m - 1 > N - 1 \), the induction hypothesis implies that these \(m - 1 \) vectors must be linearly dependents. So there are constants \(\beta_2, \ldots, \beta_m \), not all equal to 0 such that

\[
 \beta_2 \left(w_2 - \frac{\alpha_{2N}}{\alpha_{1N}} w_1 \right) + \cdots + \beta_m \left(w_m - \frac{\alpha_{mN}}{\alpha_{1N}} w_m \right) = 0_v
\]

or

\[
 \left(\frac{\beta_2 \alpha_{2N}}{\alpha_{1N}} + \cdots + \frac{\beta_m \alpha_{mN}}{\alpha_{1N}} \right) w_1 + \beta_2 w_2 + \cdots + \beta_m w_m = 0
\]

which is a dependence relation amongst \(\{w_1, \ldots, w_m\} \) since at least one of the coefficients of the last \(m - 1 \) terms must be non-zero. \(\square \)

Corollary 3.4. Suppose \(\{v_1, \ldots, v_n\} \) and \(\{w_1, \ldots, w_m\} \) are two sets of generators of a subspace \(S \) and that both sets of generators are linearly independent. Then \(n = m \).

Proof. If \(m > n \), then we will would have more vectors in the set \(\{w_1, \ldots, w_m\} \) than we have generators in set \(\{v_1, \ldots, v_n\} \). By the preceding theorem, we would conclude that the set \(\{w_1, \ldots, w_m\} \) must be a linearly dependent set of vectors. But that violates our hypothesis. If \(n > m \), the a similar argument, in which the roles of the sets \(\{v_1, \ldots, v_n\} \) and \(\{w_1, \ldots, w_m\} \) are switched would force us to conclude that the vectors \(\{v_1, \ldots, v_n\} \) are linearly independent, in violation of our hypothesis. The only other possibility left is \(n = m \) and so the statement is proved. \(\square \)

Thus the number of linearly independent vectors used to generate a subspace is independent of the choice of a linearly independent set of generators. This is an important invariant of a subspace and the motivation for the following definition.\(^1\)

Definition 3.5. The common cardinality of any linearly independent set of generators for a subspace \(S \) is called the **dimension** of \(S \).

Definition 3.6. A **basis** for a subspace \(S \) is a linearly independent set of generators for \(S \).

So, the dimension of a subspace \(S \) is the number of vectors in any basis of \(S \).

\(^1\)A notion that depends ostensibly on some choices (in a present case the choice of a linearly independent set of generators), but which in fact is independent of the choices made, we sometimes refer to as an invariant of the construction.