The Completeness Axiom, Cont’d

Axiom 12.1 (The Completeness Axiom). Every non-empty subset S of \mathbb{R} that is bounded from above has a least upper bound $\sup(S) \in \mathbb{R}$.

Theorem 12.1. Every non-empty subset S of \mathbb{R} that is bounded from below has a greatest lower bound $\inf S$.

Proof. Let T be the set $\{ -s \mid s \in S \}$. Since S is bounded from below there is an $m \in \mathbb{R}$ such that $m \leq s$ for all $s \in S$. This implies $-s \leq -m$ for all $s \in S$ and so $t \leq -m$ for all $t \in T$. So T is bounded from above, hence by the Completeness Axiom, $\sup T$ exists. Let $u = \sup T$. We shall show that $-u = \inf S$.

More precisely, we shall show that

$$-u \leq s, \quad \forall s \in S \tag{12.1}$$

and that

$$t \leq s, \quad \forall s \in S \Rightarrow t \leq -u \tag{12.2}$$

Now by definition, since u is the least upper bound of T,

$$-s \leq u, \quad \forall s \in S \tag{12.3}$$

and

$$-s \leq q, \quad \forall s \in S \Rightarrow u \leq q \tag{12.4}$$

Now from Theorem 3.2 (i) we know (12.3) is equivalent to (12.1). Setting $q = -t$, (12.4) reads

$$-s \leq -t, \quad \forall s \in S \Rightarrow u \leq -t$$

or, using Theorem 3.4 (i) again,

$$t \leq s, \quad \forall s \in S \Rightarrow t \leq -u$$

which is precisely (12.2).

□

Theorem 12.2 (The Archimedean Property of \mathbb{R}). The set \mathbb{N} of natural numbers is unbounded from above in \mathbb{R}.

Proof. (Proof by Contradiction). Suppose \mathbb{N} is bounded from above in \mathbb{R}. Then by the Completeness Axiom, \mathbb{N} has a least upper bound $m \in \mathbb{R}$. This implies that $m - 1$ is not an upper bound for \mathbb{N} (since there can be no upper bound smaller than m), hence the must be an element $n \in \mathbb{N}$ such that

$$m - 1 < n$$

But if $n \in \mathbb{N}$ then $n + 1 \in \mathbb{N}$ and so adding 1 to both sides of the above inequality yields

$$m - 1 + 1 < n + 1 \in \mathbb{N}$$

so m cannot be an upper bound for \mathbb{N} (let alone the least upper bound). We conclude that $m = \sup(\mathbb{N})$ does not exist.

Theorem 12.3. The following statements are equivalent to the Archimedean Property of \mathbb{R}.

(1) For each $z \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n > z$.

35
(2) If \(x > 0 \) and for each \(y \in \mathbb{R} \), there exists an \(n \in \mathbb{N} \) such that \(nx > y \).

(3) For each \(x > 0 \), there exists \(n \in \mathbb{N} \) such that \(0 < \frac{1}{n} < x \).

Proof.

(Archimedian Property \(\Rightarrow \) 1). Suppose (1) is false. Then there exists a \(z \in \mathbb{R} \), such that no \(n \in \mathbb{N} \) is such that \(n > z \); i.e., \(n \leq z \) for all \(n \in \mathbb{N} \), i.e. \(\mathbb{N} \) has an upper bound in \(\mathbb{R} \). Hence the Archimedian Property is false. Thus, the contrapositive of (Archimedian Property \(\Rightarrow \) 1) is proven.

(1 \(\Rightarrow \) 2). Let \(z = y/x \). Then, if (1) is true, there exists \(n \in \mathbb{N} \) such that \(n > \frac{y}{x} \), or (using that fact that \(x > 0 \)) that \(nx > y \).

(2 \(\Rightarrow \) 3). Suppose (2) is true. Then setting \(y = 1 \) we know there exists \(n \) such that \(nx > 1 \). Multiplying both sides of this last inequality by \(1/n \) we have \(\frac{1}{n} < x \). Also, \(0 < \frac{1}{n} \) since if it were false, then \(\frac{1}{n} \leq 0 \). And this last inequality when multiplied by the positive number \(n^2 \) would yield \(n \leq 0 \) which would mean that \(n \) was not a positive integer.

(3 \(\Rightarrow \) Archimedian Property). Suppose that \(\mathbb{N} \) is bounded above by some real number \(m \); i.e., \(n < m \) for all \(n \in \mathbb{N} \). Then

\[
\frac{1}{m} < \frac{1}{n} \quad \forall n \in \mathbb{N}
\]

which contradicts (3) (because there'd be no \(1/n \) between 0 and \(\frac{1}{m} \)). Thus the contrapositive of (3 \(\Rightarrow \) Archimedian Property) is proven.

Theorem 12.4. (The Denseness of \(\mathbb{Q} \)) If \(a, b \in \mathbb{R} \) and \(a < b \), then there is a rational number \(r \) such that \(a < r < b \).

Proof. It suffices to show that there exist integers \(m \) and \(n > 0 \) such that

\[
a < \frac{m}{n} < b
\]

Since \(0 < b - a \), the Statement (2) of the preceding theorem tells us that there exists an \(n \in \mathbb{N} \) such that

\[
1 < n(b - a)
\]

or

\[
a(n + 1) < bn
\]

At this point it seems obvious that there is an integer lying between \(an \) and \(bn \). Rather than make a plausibility argument, we shall provide an explicit construction of such an integer.

By the Archimedian Property again, there also exists positive integers \(k', k'' \) such that

\[
|an| < k' \quad \text{and} \quad |bn| < k''
\]

Set

\[
k = \max\{k', k''\}
\]

Then

\[
-k < an < bn < k
\]

The set

\[
\{j \in \mathbb{Z} \mid -k < j < k \text{ and } an < j\}
\]

is finite and nonempty. Set

\[
m = \min\{j \in \mathbb{Z} \mid -k < j < k \text{ and } an < j\}
\]

so that

\[
an < m \quad \text{but} \quad m - 1 \leq an.
\]
Then we have

\[m = (m - 1) + 1 \leq an + 1 < bn \]

Now we have found an \(m \in \mathbb{Z} \) such that

\[an < m < bn \]

\(\square \)