1. Show that each of the following subsets is not compact by describing an open cover for it that does not have a finite subcover
 (a) $S = [1, 3)$.
 (b) $S = \mathbb{N}$.
 (c) $S = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$

2. Prove that the intersection of any collection of compact sets is compact.
 (a) Prove the if S and T are compact subsets of \mathbb{R} then $S \cup T$ is compact.
 (b) Find an infinite collection $\{S_n \mid n \in \mathbb{N}\}$ of compact subsets of (\mathbb{R}) such that
 $\bigcup_{n \in \mathbb{N}} S_n$
 is not compact.

3. Let \mathcal{F} be a collection of disjoint open subsets of \mathbb{R}. Prove that \mathcal{F} is countable.

4. If S is a compact subset of \mathbb{R} and T is a closed subset of S, then T is compact.
 (a) Prove this using the definition of compactness.
 (b) Prove this using the Heine-Borel theorem.