
Math 4013

Solutions to Homework Problems from Chapter 2

Section 2.1

1. Sketch the level curves and graphs of the following functions:

(a)

f : R2 → R , (x, y) �→ x− y +2

The level curves are just the lines

x− y +2 = C ⇒ y = x+ 2−C

(b)

f : R2 → R , (x, y) �→ −xy
1
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The level curves are the curves where

−xy = C ⇒ y = −C

x

2. (a) Describe the behavior, as c varies, of the level curve f(x, y) = c for the function

f(x, y) = x
2 + y

2 + 1 .

• The equation of the defining the level curves
f(x, y) = c

is just

x
2 + y

2 + 1 = c

or

x
2 + y

2 = 1− c .

This is the equation of circle about the origin with radius
√
1− c. Note that c must be less than

or equal to one; otherwise the equation of the level curve has no solutions for real numbers x and

y. Below we sketch a few level curves.

3. Sketch or describe the level surfaces and a section of the graph of the following function:

f : R3 → R ; (x, y, z) �→ −x2 − y
2 − z

2
.

• The level surfaces of this function must be the solution sets of equations of the form
f(x, y, z) = c ,

or

−x2 − y
2 − z

2 = c ,
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Figure 1

or

x
2
+ y

2
+ z

2
= −c .

The last equation is just the equation of a sphere about the origin in R3 of radius
√
−c. We

conclude that the level surfaces of f are just sphere’s about the origin.

The z = 0 section of the graph of f will consist of points in R4 corresponding to the intersection

of the graph of f with the plane z = 0:

S =
{
(x, y, z, t) ∈ R

4
| t = −x

2
− y

2
− z

2
}
∩
{
(x, y, z, t) ∈ R

4
| z = 0

}

=
{
(x, y, z, t) ∈ R

4
| z = 0 , t = −x

2
− y

2
}

4. Sketch or describe the surface in R
3
corresponding to the equation

4x
2
+ y

2
= 16 .

• This surface will just be a two dimensional ellipse extende to ±∞ in the z-direction; a squashed

cylinder if you will.

5. Sketch or describe the surface in R3 corresponding to the equation

x

4
=

y
2

4
+

z
2

9
.

Section 2.2

1. Show that the following subset of R2 is open.

B =
{
(x, y) ∈ R

2
| y > 0

}
.

• By definition, a subset B of R2 is open if for any point r ∈ B there exists a disk Dρ(r) of radius

ρ > 0 about r that lies entirely within B.
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— ∗ Let r = (x, y) be an arbitrary point of B. Consider the disk

Dy

2

(r) =
{
x ∈ R

2
| ‖x‖ < ρ/2

}
.

Clearly, this disk lies completely with B. This this construction works for any point

r ∈ B, we conclude that for every point of B there is an open disk containing that point

lying completely within B. Thus, B is open.

2. Prove that if U and V are neighborhoods of x ∈ Rn, then so are U ∪ V and V ∩ U.
• By definition, a set S is a neighborhood of a point x ∈ Rn if
(i) x ∈ S;
(ii) S is open.
Clearly, since U and V are neighborhoods of x, x ∈ U and x ∈ V and so x ∈ U∪V and x ∈ U∩V .
It thus remains to show that both U ∪ V and U ∩ V are open.
We first prove that U ∪ V is open. Let y ∈ U ∪ V . Then either
(i) y ∈ U
(ii) y ∈ V (Note that these two cases are exhaustive but not exclusive.) In the first case, since
U is open (since it is a neighborhood), there must exist an open ball Bρ

1
(y) about y completely

contained in U . But then this ball is also completely contained in U ∪V . In the second case, since
V is open, there must exist some open ball Bρ

2
(y) completely contained in V and so completely

contained in U ∪V . Thus, in either case there must exist an open ball about y that is completely
contained in U ∪ V . Hence, U ∪ V is open.
We now show that U ∩ V is open. Let y ∈ U ∩ V . Clearly, y ∈ U and y ∈ V . Since U and V are
open, there must exist open balls

Bρ
1
(y) ⊂ U

Bρ2
(y) ⊂ V

Set

ρ =min [ρ
1
, ρ

2
] .

Then Bρ(y) ⊂ Bρ
1
(y) ⊂ U and Bρ(y) ⊂ Bρ

2
(y) ⊂ V , and so

Bρ(y) ⊂ U ∩ V .

There thus exists an open ball about y that is completely contained in U ∩ V . Since y is an

arbitrary point of U ∩ V , we conclude that U ∩ V must be an open set.

3. Compute the following limits. (The text allows the reader to assume that the exponential, sine, and

cosine functions are all continuous. By Example 7 on page 108, any polynomial function on Rn
is also

continuous.)

(a)

lim
(x,y)→(0,1)

x
3
y

• Since x
3
y is a polynomial function on R

2
, it is continuous. Hence, its limit at a point r ∈ R

2

coincides with its value at the point r. Thus

lim
(x,y)→(0,1)

x
3
y = x

3
y

∣
∣
∣
∣
(0,1)

= 0

(b)

lim
(x,y)→(0,1)

exy

• The exponential function f(x, y) = ex and the linear function g(x, y) = y are both continuous

for all (x, y) ∈ R2
. By Theorem 4(iii) so must be fg(x, y) = f(x, y)g(x, y) = exy. Since exy is

continuous, its limit at any point must coincide with its value there. Thus,

lim
(x,y)→(0,1)

exy = exy

∣
∣
∣
∣
(0,1)

= 1 .
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(c)

lim
x→0

sin
2
(x)

x

• The function in the denominator vanishes at x = 0 and so we cannot apply continuity arguments

to evaluate the limit. (In other words, Theorem 4 (iv) cannot be applied in this case.) We

can, however, evaluate this limit using l’Hospital’s rule: if f and g are continuous differentiable

functions and

lim
x→xo

f (x) = 0 = lim
x→xo

g(x)

then

lim
x→xo

f(x)

g(x)
= lim

x→xo

f ′(x)

g′(x)
.

Applying l’Hospital’s rule to the case at hand we find

lim
x→0

sin
2
(x)

x
= lim

x→0

2 cos(x) sin(x)

1

= lim
x→0

2 cos(x) sin(x)

= 2 cos(x) sin(x) |
x=0

= 0

In the last couple of steps we have used the fact that the sine and cosine functions are continuous

- so their limits were taken by simply evaluated them at the limit point.

(d)

lim
x→0

sin
2
(x)

x2

• This problem is of course similar to the preceding one. The only difference is that we must apply

l’Hospital’s Rule twice before we get an obviously continuous function.

lim
x→0

sin
2
(x)

x2
= lim

x→0

2 cos(x) sin(x)

2x

= lim
x→0

−2 sin
2
(x) + 2cos2(x)

2

= lim
x→0

(
− sin

2
(x) + cos

2
(x)

)

= 1

4. Compute the following limits if they exist.

(a)

lim
(x,y)→(0,0)

(
x
2
+ y

2
+ 3

)

• This is the limit of a polynomial function on R2. Since polynomial functions are continuous, we

can evaluate the limit by simply evaluating the polynomial at the limit point. Thus,

lim
(x,y)→(0,0)

(
x
2
+ y

2
+3

)
=

(
x
2
+ y

2
+ 3

)
∣∣∣∣
(0,0)

= 3 .

(b)

lim
(x,y)→(0,0)

xy

x2 + y2 + 2
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• Both f(x, y) = xy and g(x, y) = x2 + y2 + 2 are continuous for all x. Moreover, g(0, 0) = 2 �= 0,

so we can first apply Theorem 4 (iv) to conclude that
1
g
is continuous at (0,0) and then Theorem

4 (iii) to conclude that
f

g
=

xy

x2+y2+2 is continuous at (0,0). Therefore, the limit at (0, 0) must

coincide with evaluation at (0,0). Thus,

lim
(x,y)→(0,0)

xy

x2 + y2 +2
=

xy

x2 + y2 + 2

∣
∣
∣
∣
(0,0)

= 0 .

(c)

lim
(x,y)→(0,0)

exy

x+1

• This is similar to the preceding problem. Since f(x, y) = exy is continuous at (0,0) and g(x, y) =
x+1 is continuous and non-vanishing at (0,0), f/g is continuous at (0,0) and so we can evaluate

its limit at (0,0) by evaluating f/g at (0,0):

lim
(x,y)→(0,0)

exy

x+1
=

exy

x+ 1

∣
∣
∣
∣
(0,0)

=
1

1
= 1 .

(d)

lim
(x,y)→(0,0)

cos(x) − 1− x
2

2

x4 + y4

• In this case, the limit does not exist. To see this, consider the following curve through (0,0):

γ : R → R
2 , t �→ (0, t) ,

and set

f(x, y) =
cos(x) − 1−

x
2

2

x4 + y4
.

If the limit of f(x, y) as (x, y) approaches (0,0) exists, it must be coincide with

lim
t→0

f (γ(t)) = lim
t→0

−1

t4

The right hand side, however, is undefined. We conclude that the limit

lim
(x,y)→(0,0)

cos(x) − 1−
x
2

2

x4 + y4

does not exist.

(e)

lim
(x,y)→(0,0)

(x− y)2

x2 + y2

• This limit does not exist either. To see this, consider the following two curves through the (0,0):

γ1 : R → R
2 , t �→ (t,0)

γ2 : R → R
2 , t �→ (t, t)

and set

f(x, y) =
(x− y)2

x2 + y2
.

If the limit (e) is to exist, we must have

lim
t→0

f (γ1(t)) = lim
(x,y)→(0,0)

(x− y)2

x2 + y2
= lim

t→0
f (γ2(t))
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Evaluating the limit on the far left hand side we find

lim
t→0

f (γ1(t)) = lim
t→0

(t− 0)2

t2 + 02
= 1 ,

but the limit on the far right hand side is

lim
t→0

f (γ2(t)) = lim
t→0

(t− t)2

t2 + t2
= 0 .

Since these two limits do not agree, we can conclude the limit

lim
(x,y)→(0,0)

(x− y)2

x2 + y2

does not exist.

5. Show that the map

f : R→ R, x �→

x2ex

2− sin(x)

is continuous.

• We can prove this using the Theorem 4 and the fact that the exponential function, the sine

function, and any polynomial function is continuous.

Since x2
and ex are continuous, so is their product p(x) = x2ex by Theorem 4 (iii). Since the

constant function h(x) = 2 and sin(x) are continuous, so is their sum q(x) = 2−sin(x), by Theorem
4 (ii). Since 2− sin(x) is nowhere zero, the quotient function 1/q(x) is continous everywhere, by
Theorem 4 (iv). Finally since both p(x) and 1/q(x) are continuous, so is

p(x) ·
1

q(x)
=

x2ex

2− sin(x)

by Theorem 4 (iii).

Section 2.3

1. Find
∂f
∂x

and
∂f
∂y

for each of the following functions.

(a) f(x, y) = xy.

•
∂f

∂x
= y

∂f

∂y
= x

(b) f(x, y) = x cos(x) cos(y).

•
∂f

∂x
= cos(x) cos(y) − x sin(x) cos(y)

∂f

∂y
= −x cos(x) sin(y)

2. Evaluate
∂z
∂x

and
∂z
∂y

for the function z = log
[√

1 + xy
]
at the points (1,2) and (0,0).

•
∂z

∂x
=

1√
1 + xy

(
y

2
√
1 + xy

)
=

y

2 (1 + xy)

∂z

∂y

=
1√

1 + xy

(
x

2
√
1 + xy

)
=

x

2 (1 + xy)
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Thus,

∂z

∂x

∣
∣
∣
∣
(1,2)

=
2

2(1 + 2)
=

1

3

∂z

∂y

∣
∣
∣
∣
(1,2)

=
1

2(1 + 2)
=

1

6

∂z

∂x

∣
∣
∣
∣
(0,0)

=
0

2(1 + 0)
= 0

∂z

∂y

∣
∣
∣
∣
(0,0)

=
0

2(1 + 0)
= 0

3. Find the partial derivatives
∂w
∂x

and
∂w
∂y

when w = xex
2
+y2 .

•

∂w

∂x
= ex

2+y2
+ x

(

2xex
2+y2

)

∂w

∂y
= x

(

2yex
2+y2

)

4. Show that the function

f(x, y) =
2xy

(x2 + y2)
2

is differentiable at each point in its domain. Is this function C1.

• The natural domain of f(x, y) is R
2 − {(0, 0)} (the natural domain of a rational function in n

variables is Rn minus the points where the denominator vanishes). Now

∂f

∂x
=

2y
(
x2 + y2

)2
− 2xy

(
2
(
x2 + y2

)
2x

)

(x2 + y2)
4

=
2x4y +4x2y3 +2y5 − 8x4y − 8x2y3

(x2 + y2)
4

∂f

∂y
=

2x
(
x2 + y2

)2
− 2xy

(
2
(
x2 + y2

)
2y

)

(x2 + y2)
4

=
2x5 +4x3y2 + 2xy4 − 8x3y2 − 8xy4

(x2 + y2)
4

Both partials are rational functions with singularities at the origin. They are therefore continuous

everywhere except possibly at (0,0). Since the partial derivatives are continuous everywhere within

the domain of f , f is C1 throughout its domain.

5. Find the equation of the plane tangent to the surface z = x2 + y3 at (3,1,10).

• The tangent plane to a graph z = f(x, y) at the point (xo, yo, f (xo, yo)) consists of points

(x, y, z) ∈ R3 satisfying the following equation

z = f (x
o
, y

o
) +

∂f

∂x

∣
∣
∣
∣
(xo,yo)

(x− x
o
) +

∂f

∂y

∣
∣
∣
∣
(xo,yo)

(y − y
o
) .

For the case at hand,

∂f

∂x
= 2x

∂f

∂y
= 3y

and so we must have

z = 10 + (6)(x− 3) + (3)(y − 1)
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or

6x+ 3y − z = 11 .

6. Compute the matrix of partial derivatives of the following function:

f : R
2
→ R

3, f(x, y) = (xey + cos(y), x, x+ ey) .

•

Df =




∂f1

∂x

∂f1

∂y
∂f2

∂x

∂f2

∂y
∂f3

∂x

∂f3

∂y


 =




e
y

xe
y
− sin(y)

1 0

1 e
y




7. Find the equation of the tangent plane to z = x
2 +2y3 at (1,1,3).

• We have

∂z

∂x
= 2x

∂z

∂y
= 6y

2

and so (using the formula appearing in the solution to Problem 2.3.5), the equation of the tangent

plane to the graph of x2 + 2y3 at (1,1,3) is

z = 3 + (2)(x− 1) + (6)(y − 1)

or

2x+6y − z = 5 .

Section 2.4

1. Find σ
′(t) and σ

′(0) for the following path.

σ(t) =
(
e
t
, cos(t), sin(t)

)
.

• We have

σ
′
(t) =

dσ

dt
(t)

=

(
d

dt

(
e
t
)
,
d

dt
(cos(t)) ,

d

dt
(sin(t))

)

=
(
e
t
,− sin(t), cos(t)

)

and so

σ
′
(0) =

(
e
0
,− sin(0), cos(0)

)
= (1,0, 1)

2. Determine the velocity and acceleration vectors, and the equation of the tangent line for each of the

following curves at the specified value of t.

(a) r(t) = 6ti+ 3t2j+ t3k , t = 0

•

dr

dt
= 6i +6tj+3t2k

d2r

dt2
= 6j+6tk

At t = 0, we have

r(0) = 0i +0j+0k = 0

r
′
(0) = 6i
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Therefore, the equation of the tangent line at t = 0 is

l(t) = r(0) + tr′
(0) = 6ti .

(b) σ(t) =
(
sin(3t), cos(3t),2t3/2

)
, t = 1

• We have

σ
′

(t) =

(
3 cos(3t),−3 sin(3t), 3t

1/2
)

σ
′′

(t) =

(
−9 sin(3t),−9 cos(3t),

3

2
t
−1/2

)
.

At t = 1 we have

σ(1) = (sin(3), cos(3), 2)

σ
′

(1) = (3 cos(3),−3 sin(3),3)

so the equation of the tangent line at t = 1 is

l(t) = σ(1) + tσ
′
(1) = (sin(3) + 3 cos(3)t, cos(3) − 3 sin(3)t,2 + 3t)

(c) σ(t) =
(
cos

2
(t),3t− t

3
, t
)
, t = 0

• We have

σ
′
(t) =

(
2 cos(t) sin(t),3− 3t2,1

)

σ
′′
(t) =

(
−2 sin2(t) + 2 cos2(t),−6t,0

)
.

At t = 0 we have

σ(0) = (1,0, 0)

σ
′
(t) = (0,3, 1)

so the equation of the tangent line at t = 1 is

l(t) = σ(0) + tσ
′
(0) = (1, 3t, t)

(d) σ(t) = (0,0, t) , t = 1

• We have

σ
′
(t) = (0, 0, 1)

σ
′′
(t) = (0, 0, 0) .

At t = 1 we have

σ(0) = (0,0, 1)

σ
′
(t) = (0,0, 1)

so the equation of the tangent line at t = 1 is

l(t) = σ(1) + tσ
′
(1) = (0, 0,1 + t) .

3. Determine the velocity and acceleration vectors, and the equation of the tangent line for each of the

following curves at the specified value of t.

(a) r(t) = cos(t)i+ sin(t)j , t = 0

•
dr

dt
= − sin(t)i + cos(t)j

d
2r

dt2
= − cos(t)i− sin(t)j
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At t = 0, we have

r(0) = 1i +0j = i

r′
(0) = 0i +1j = j

Therefore, the equation of the tangent line at t = 0 is

l(t) = r(0) + tr′
(0) = i + tj .

(b) σ(t) =
(
t sin(t), t cos(t),

√
3t
)
, t = 0

• We have

σ
′
(t) =

(
sin(t) + t cos(t), cos(t) − t sin(t),

√
3

)

σ
′′
(t) = (2 cos(t) − t sin(t), 2 sin(t) − t cos(t), 0) .

At t = 0 we have

σ(0) = (0, 1,0)

σ
′
(0) =

(
2,0,

√
3

)

so the equation of the tangent line at t = 0 is

l(t) = σ(0) + tσ
′
(0) =

(
2t, 1,

√
3t

)

(c) r(t) =
√
2ti+ e

t
j+ e−t

k , t = 0

• We have

σ
′
(t) =

√
2i+ e

t
j− e

−t
k

σ
′′
(t) = e

t
j+ e

−t
k .

At t = 0 we have

σ(0) =
(
0, e, e

−1
)

σ
′
(t) =

(
0, e,−e

−1
)

so the equation of the tangent line at t = 0 is

l(t) = σ(0) + tσ
′
(0) =

(
0, e+ et, e

−1 − e
−1

t
)

(d) σ(t) = ti+ tj+ 2

3
t3/2k , t = 9

• We have

σ
′
(t) =

(
1,1, t

1/2
)

σ
′′

(t) =

(
0,0,

1

2
t
−1/2

)
.

At t = 9 we have

σ(9) = (9,9,18)

σ
′

(t) = (1,1,3)

so the equation of the tangent line at t = 9 is

l(t) = σ(9) + tσ
′

(9) = (9 + t,9 + t,18 + 3t) .

4. Find the path σ such that σ(0) = (0,−5, 1) and σ
′(t) =

(
t, e

t
, t

2
)
.
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• Let σ(t) = (σx(t), σy(t), σz(t)). We must have

σ
′

x
(t) = t

σ
′

y
(t) = e

t

σ
′

z
(t) = t

2

Integrating both sides of these equations with respect to t we obtain

σx(t) =
1

2
t
2
+A

σy(t) = e
t
+B

σz(t) =
1

3
t
3
+C

Here A,B,C are arbitrary constants of integration. A,B,C will be determined by the initial

conditions

0 = σx(0) = 0 +A

−5 = σy(0) = 1 +B

1 = σz(0) = C

⇒

A = 0

B = −6

C = 1

Thus,

σ(t) =

(
1

2
t
2
, e

t
− 6,

1

3
t
3
+1

)

5. Suppose a particle follows a path σ(t) = (et, e−t
, cos(t)) until it flies off on a tangent at time t = 1.

Where is it at time t = 2.

• At time t = 1, the particle is at position

σ(1) =
(
e, e

−1
, cos(1)

)

with velocity

σ
′

(1) =
(
e
t
,−e

−t
,− sin(t)

)∣
∣
t=1

=
(
e,−e

−1
,− sin(1)

)
.

The text intends for us to assume that the particle thereafter travels in straight line with velocity

σ
′(1). Thus,

r(t) = σ(1) + σ
′

(1)(t− 1) =
(
e+ e(t − 1), e

−1
− e

−1
(t− 1), cos(1)− sin(1)(t− 1)

)
.

At time t = 2 then

r(2) = (2e, 0, cos(1) − sin(1)) .

Section 2.5

1. Write out the chain rule for each of the following functions and justify your answer in case using

Theorem 11.

(a)
∂h

∂x
where h(x, y) = f (x, u(x, y)).

• — To compute
∂h

∂x

we regard h(x, y) as a composition of a function f : R2
→ R : (v, u)→ f(v, u)

aand a map g : R
2
→ R

2
; (x, y) �→ (x,u(x, y)). Then

Df =

(
∂f
∂v

∂f
∂u

)

Dg =

(
∂g1
∂x

∂g1

∂y
∂g2

∂x

∂g2

∂y

)
=

(
1 0
∂u

∂x

∂u

∂y

)
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and so (
∂h

∂x
,

∂h

∂y

)
= Dh = D(f ◦ g)

= DfDg

=
(

∂f

∂v

∂f

∂u

)∣∣
(x,u)

∗

(
1 0
∂u

∂x

∂u

∂y

)

=
(

∂f

∂x
+ ∂f

∂u

∂u

∂x
,

∂f

∂u

∂u

∂y

)
Therefore, equating the first components on the extreme sides of this equation:

∂h

∂x
=

∂f

∂x
+

∂f

∂u

∂u

∂x
.

(b) dh

dx
where h(x) = f (x, u(x), v(x)).

• In this case, we regard h(x) as a composition of two functions f : R3
→ R, (w,u, v) �→ f(w,u, v)

and g : R → R
3
, x �→ (x, u(x), v(x)). The general chain rule then gives

dh

dx
= D (f ◦ g)

= Df
∣∣
g(x) ·Dg

∣∣
x

=

(
∂f

∂w

∂f

∂u

∂f

∂v

)
·




dg1
ds
dg2

dx
dg3

dx




=

(
∂f

∂w

)
dg1

dx
+

(
∂f

∂u

)
dg2

dx
+

(
∂f

∂v

)
dg3

dx

=

(
∂f

∂x

)
+

(
∂f

∂u

)
du

dx
+

(
∂f

∂v

)
dv

dx

In the last step, we have simply replaced w by x, g1 by x, g2 by u(x), and g3 by v(x) (in accordance

with the definitions of f and g).

(c)
∂h

∂x
where h(x, y, z) = f (u(x, y, z), v(x, y),w(x)).

• In this case, we regard h(x, y, z) as the composition f◦g of two functions g : R3
→ R

3
, (x, y, z) �→

(u(x, y, z), v(x, y),w(x)) and f : R3
→ R. The general chain rule gives(

∂h

∂x

∂h

∂y

∂h

∂z

)
= Dh = Df

∣∣
g(x,y,z) ·Dg

∣∣
(x,y,z)

=

(
∂f

∂u
,
∂f

∂v
,
∂f

∂w

)∣∣∣∣
g(x,y,z)




∂g2

∂x

∂g2

∂y

∂g2

∂z
∂g3

∂x

∂g3

∂y

∂g3

∂z




So

∂h

∂x
=

(
∂f

∂u

)(
∂g1

∂x

)
+

(
∂f

∂v

)(
∂g2

∂x

)
+

(
∂f

∂w

)(
∂g3

∂x

)

=

(
∂f

∂u

)(
∂u

∂x

)
+

(
∂v

∂x

)(
∂v

∂x

)
+

(
∂f

∂w

)(
dw

dx

)

2. Verify the first special case of the chain rule for the composition f ◦ c in each of the following cases.

(a) f(x, y) = xy , c(t) = (et, cos(t)) .

• If we compute f(t) = f (c(t)) explicitly, we find

f (c(t)) = x(t)y(t) = e
t
cos(t) ,
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so

df

dt
= e

t
cos(t) − e

t
sin(t) .

On the other hand, according to the chain rule

df

dt
= Df = Df

∣
∣
c(t) ·Dc

∣∣
t

=

(
∂f

∂x
,

∂f

∂x

)∣∣∣∣
c(t)

·

dc2

dt

= (y(t), x(t)) ·

− sin(t)

=
(
cos(t), e

t
)
·

− sin(t)

= cos(t)et − et sin(t)

which, of course agrees with the preceding computation.

(b) f(x, y) = exy , c(t) =
(
3t2, t3

)
.

• If we compute f(t) = f (c(t)) explicitly, we find

f (c(t)) = ex(t)y(t) = e3t
5

,

so

df

dt
= 15t

4
e
3t5

.

On the other hand, according to the chain rule

df

dt
= Df = Df

∣
∣
c(t) · Dc

∣∣
t

=

(
∂f

∂x
,

∂f

∂x

)∣∣∣∣
c(t)

·

dc2

dt

=

(
y(t)e

x(t)y(t)
, x(t)e

x(t)y(t)
)

·

3t
2

=

(
t
3
e
3t

5

,3t2e3t
5
)

·

3t2

= 6t4e3t
5

+9t4e3t
5

= 15t4e3t
5

which, of course agrees with the preceding computation.

3. Let f : R
3
→ R be differentiable. Making the substitution

x = ρ cos(θ) sin(φ) , y = ρ sin(θ) sin(φ) , z = ρ cos(φ)

(spherical coordinates) into f(x, y, z), compute ∂f/∂ρ, ∂f/∂θ, and ∂f/∂φ.

• Let g : R
3
→ R

3
be the map sending

(ρ, θ, φ) → (ρ cos(θ) sin(φ), ρ sin(θ) sin(φ), ρ cos(φ))

If we set

f (ρ, θ, φ) = f (x(ρ, θ, φ), y(ρ, θ, φ), z(ρ, θ, φ))



15

then the Chain Rule tells us that(
∂f

∂ρ

∂f

∂θ

∂f

∂φ

)∣∣∣
(ρ,θ,φ)

= Df
∣∣
(x(ρ,θ,φ),y(ρ,θ,φ),z(ρ,θ,φ))Dg

∣∣
(ρ,θ,φ)

=

(
∂f

∂x

∂f

∂y

∂f

∂z

)(
∂y

∂ρ

∂y

∂θ

∂y

∂φ
∂z

∂ρ

∂z

∂θ

∂z

∂φ

)

=

(
∂f

∂x

∂f

∂y

∂f

∂z

)(
sin(θ) sin(φ) ρ cos(θ) sin(φ) ρ sin(θ) cos(φ)

cos(φ) 0 −ρ sin(φ)

)

Thus,

∂f

∂ρ
=

∂f

∂x
cos(θ) sin(φ) +

∂f

∂y
sin(θ) sin(φ) +

∂f

∂z
cos(φ)

∂f

∂θ
= −

∂f

∂x
ρ sin(θ) sin(φ) +

∂f

∂y
ρ cos(θ) sin(φ)

∂f

∂φ
=

∂f

∂x
ρ cos(θ) cos(φ) +

∂f

∂y
ρ sin(θ) cos(φ)−

∂f

∂z
ρ sin(φ)

where, of course, the partial derivatives
∂f

∂x
,
∂f

∂y
,
∂f

∂z
are all to be evaluated at the point (x, y, z) =

(ρ cos(θ) sin(φ), ρ sin(θ) sin(φ), ρ cos(φ)).

4. Let f(u, v) =
(
tan(u− 1) − e

v
, u

2
− v

2
)
and g(x, y) = (ex−y, x− y). Calculate f◦g andD (f ◦ g) (1,1).

• Since both f and g are functions from R
2
to R

2
, f ◦ g is also a function from R

2
to R

2
. We have

(f ◦ g) (x, y) =

(
tan (u(x, y)− 1)− ev(x,y), (u(x, y))

2 − (v(x, y))
2
)

=

(
tan

(
ex−y − 1

)
− ex−y,

(
ex−y

)2
− (x− y)2

)

If we try to compute D (f ◦ g)(1,1) directly we’re going get a mess; we’d have to employ the chain

rule for ordinary differentiation a number of times without any simplification appearing until we

finally evaluate the result at the point (1,1). Using the chain rule for partial derivatives, we can

hope for some simplification as soon as we we evaluate Df at the point g(1, 1) = (1, 0) and Dg

at the point (1,1).

D (f ◦ g)|(1,1) = Df
∣∣
g(1,1)Dg

∣∣
(1,1)

=

(
∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

)∣∣∣∣
(u,v)=g(1,1)

(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)∣∣∣∣∣
(1,1)(

sec2(u− 1) −e
v

2u −2v

)∣∣∣∣
(u,v)=(1,0)

(
e
x−y

−ex−y

1 −1

)∣∣∣∣
(1,1)

=

(
1 −1

2 0

)(
1 −1

1 −1

)

=

(
1− 1 −1 + 1

2 + 0 −2 + 0

)

=

(
0 0

2 −2

)

Section 2.6

1. Show that the directional derivative of f(x, y, z) = z2x+y3 at (1,1,2) in the direction
(
1/
√
5, 2/

√
5,0

)

is 2
√
5.

• According to Theorem 12 on page 147,

Dnf
∣∣
(xo,yo,zo) = ∇f

∣
∣
(xo,yo,zo)

·n .
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Thus,

D(
1√
5
,

2√
5
,0
) [

z
2
x+ y

3
]
∣∣∣∣
(1,1,2)

=
(
z
2
, 3y

2
, 2zx

)∣∣
(1,1,2)

·
(

1√
5
,
2√
5
,0

)

= (4,3,4) ·
(

1√
5
,
2√
5
,0

)

=
1√
5
(4 + 6 + 0)

=
2 · 5√

5

= 2
√
5

2. Find the equation of the plane tangent to the surface z = f(x, y) at the indicated point.

(a) z = x
3 + y

3 − 6xy, (1,2,-3).

• This can be done two different ways.

The first is to recognize that

z = x
3
+ y

3 − 6xy

is the graph of the function f(x, y). According to the discussion in Section 2.3 (see pages 122 -

123), the equation of the plane tangent to the graph of f at (xo, yo) is

z = f (xo, yo) +
∂f

∂x

∣∣∣∣
(x

o
,y
o
)

(x− xo) +
∂f

∂y

∣∣∣∣
(x

o
,y
o
)

(y − yo) .

For the case at hand, this would lead to the following equation

z = −3 +
(
3x2

− 6y
)∣∣

(1,2)
(x− 1) +

(
3y2 − 6x

)∣∣
(1,2)

(y − 2)

= −3− 9(x− 1) + (6)(y − 2)

= −9x+6y − 6

or

9x− 6y + z = −6 .

The second method is to rewrite

z = x3
+ y3 − 6xy

as

x3
+ y3 − 6xy − z = 0

as the equation of a level surface of a function

g(x, y, z) = x3
+ y3 − 6xy − z .

According to the definition of page 150, the equation of the tangent plane to a level surface at a

point (xo, yo, zo) is

∇f (xo, yo, zo) · (x− xo, y − yo, z − zo) = 0 .

For the case at hand, we would have

0 =

(
3x2

− 6y,3y2 − 6x,−1
)∣∣

(1,2,−3)
· (x− 1, y − 2, z + 3)

= (−9,6,−1) · (x− 1, y − 2, z + 3)

= −9x+ 9 + 6y − 12− z − 3

= −9x+ 6y − z − 6

or

9x− 6y + z = −6

which, of course, is identical to the result of the first method.
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(b) z = cos(x) cos(y), (0, π/2,0).
• To find the equation of the tangent plane, we’ll use the second method of part (a). The surface

z = cos(x) cos(y) coincides with the level surface f(x, y, z) = 0 of the function

f(x, y, z) = cos(x) cos(y)− z .

Thus, the equation of the tangent plane to the level surface f(x, y, z) = 0 at the point (0, π/2,0)
is

0 = ∇f
(
0,

π

2

,0
)
·

(
x− 0, y −

π

2

, z − 0

)

= (− sin(x) cos(y),− cos(x) sin(y),−1)
∣∣∣
(0,

π

2
,0) ·

(
x, y −

π

2
, z
)

= (0,−1,−1) ·
(
x, y −

π

2
, z
)

= −y +
π

2
− z

or

y + z =
π

2
.

3. Compute the gradient ∇f for each of the following functions.
(a) f(x, y, z) = 1/

√
x2 + y2 + z2

•
∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

=

(
−x

[x2 + y2 + z2]
3/2

,
−y

[x2 + y2 + z2]]]]3/2
,

−z
[x2 + y2 + z2]

3/2

)

(b) f(x, y, z) = xy + yz + xz

•
∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

= (y + z, x+ z, x+ y)

(c) f(x, y, z) = 1

x2+y2+z2
.

•
∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

=

(
−2x

[x2 + y2 + z2]
2
,

−2y
[x2 + y2 + z2]]]]2

,
−2z

[x2 + y2 + z2]
2

)

4. For each of the functions in Exercise 6, what is the direction of fastest increase at (1,1,1)?

• The direction of fastest increase of a differentiable function f at a point (xo, yo, zo) is given by the

value of ∇f at that point. Thus, for the three functions in Problem 2.6.6 we have, respectively,
(−1√

3
,
−1√
3
,
−1√
3

)

(2,2, 2)
(−2√

3
,
−2√
3
,
−2√
3

)

as the (un-normalized) directions of fastest increase.
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5. Captain Ralph is in trouble near the sunny side of Mercury. The temperature of the ship’s hull when

he is at location (x, y, z) will be given by

T (x, y, z) = e
−x

2
−2y

2
−3z

2

where x, y, z are measured in meters. He is currently at (1,1,1).

(a) In what direction should he proceed in order to decrease his temperature most rapidly?

• The direction of fastest increase in temperature around the point (1,1,1) is given by the value of

the gradient ∇T at that point. The direction of the fastest decrease in temperature will be the

direction exactly opposite ∇T (1,1,1). Thus, Captain Ralph should head in the direction

−∇T (1, 1, 1) = −

(
−2xe

−x
2
−2y

2
−3z

2

,−4ye
−x

2
−2y

2
−3z

2

,−6ze
−x

2
−2y

2
−3z

2
)∣∣∣

(1,1,1)

=
(
2e
−6

,4e
−6

,6e
−6

)

This vector, however, has a non-zero magnitude. To identify the normalized direction vector

corresponding to −∇T (1, 1, 1) we simply divide −∇T (1,1,1) by its magnitude. This yields

n =
−∇T (1,1,1)

‖ −∇T (1,1, 1)‖ =

(
2e−6, 4e−6, 6e−6

)
√
56e−6

=
(1,2,3)√

14
.

(b) If the ship travels at e8 meters per second, how fast will the temperature be decreasing if he

heads in that direction?

• Consider the trajectory given by the map

c(t) = (1, 1, 1) +
(
e
8
m/s

)
nt .

This would correspond to a straight line trajectory passing through the point (1,1,1) at t = 0 in

the direction of n with a speed of e8m/s. The temperature the ship would feel as it travelled

along this trajectory would be

T (t) = T (c(t))

and the rate at which the temperature would decrease would be

dT

dt
=

d

dt
T (c(t)) = DT

∣∣
c(t) ·Dc

∣
∣
t
= ∇T (c(t)) ·

dc

dt
(t) .

At t = 0, we have c(t) = (1,1,1) and dc

dt
= e8(m/s)n. Thus,

dT

dt
= ∇T (1,1, 1) ·

(
e8√
14

,
2e8√
14

,
3e8√
14

)

=
(
−2e−6

,−4e−6
,−6e−6

)
·
(

e8√
14

,
2e8√
14

,
3e8√
14

)

=
e2√
14
(−2− 8− 18)

= −2
√
14e

2

(c) Unfortunately, the metal of the hull will crack if cooled at a rate greater than
√
14e2 degrees

per second. Describe the set of possible directions in which he may proceed to bring the temperature

down at no more than that rate.

• We now consider straight line trajectories through the point (1,1,1) of the form

c
′
(t) = (1,1, 1) + e

8
(m/s)n

′
t
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where now n
′ is an arbitrary unit vector (indicating the direction at which the spaceship is

heading). Along such a path we have

dT

dt
(0) =

d

dt
T (c

′
(t))

∣
∣
∣
∣
t=0

= ∇T

∣
∣
∣
∣c

′(0) ·
dc

′

dt

∣
∣
∣
∣
0

= ∇T (1,1, 1) · e8n′

Using the fact that

a · b = ‖a‖ ‖b‖ cos(θ)

we can write

dT

dt
(0) = ‖∇T (1,1, 1)‖ ‖e8n′‖ cos(θ)

=

(√
56e

−6

) (
e
8
)
cos(θ)

= 2
√
14e

2
cos(θ)

We now demand the rate at which the spaceship hull cools be no greater than
√
14e2;

−
√
14e

2
<

dT

dt
(0) = 2

√
14e

2
cos(θ)

which leads to the condition that

cos(θ) > −1

2

or

θ < 120
◦

We conclude that the angle between the direction of fastest increase in temperature and the

direction in which the spaceship heads should be no greater than 120◦.

6. Compute the second partial derivatives ∂2f/∂x2, ∂2f/∂x∂y, ∂2f/∂y∂x, ∂2f/∂y2 for each of the

following functions. Verify Theorem 15 in each case.

(a) f(x, y) = 2xy/
(
x2 + y2

)2
, (x, y) �= 0.

•
∂f

∂x
=

2y
(
x2 + y2

)2 − (2xy)2
(
x2 + y2

)
(2x)

(x2 + y2)
4

=
2y3 − 6x2y

(x2 + y2)
3

∂f

∂y
=

2x
(
x2 + y2

)2 − (2xy)2
(
x2 + y2

)
(2y)

(x2 + y2)
4

=
2x3 − 6xy2

(x2 + y2)
3

∂

∂y

∂f

∂x
=

(
6y2 − 6x2

) (
x2 + y2

)3 − (
2y3 − 6x2y

)
3
(
x2 + y2

)2
(2y)

(x2 + y2)
6

=
−6x4 − 6y4 + 36x2y2

(x2 + y2)
4
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∂

∂x

∂f

∂y
=

(
6x2 − 6y2

) (
x2 + y2

)3 − (
2x3 − 6xy2

)
3
(
x2 + y2

)2
(2y)

(x2 + y2)
6

=
−6x4 − 6y4 + 36x2y2

(x2 + y2)
4

Note that

∂

∂y

∂f

∂x
=

∂

∂x

∂f

∂y
.

(b) f(x, y, z) = ez + (1/x) + xe−y , x �= 0.

•

∂f

∂x
= −

1

x2
+ e

−y

∂

∂y

∂f

∂x
= −e

−y

∂

∂z

∂f

∂x
= 0

∂f

∂y
= −xe

−y

∂

∂x

∂f

∂y
= −e

−y

∂

∂z

∂f

∂y
= 0

∂f

∂z
= e

z

∂

∂x

∂f

∂z
= 0

∂

∂y

∂f

∂z
= 0

Note that

∂

∂x

∂f

∂y
= −e

−y =
∂

∂y

∂f

∂x
,

∂

∂x

∂f

∂z
= 0 =

∂

∂z

∂f

∂x

∂

∂y

∂f

∂z
= 0 =

∂

∂z

∂f

∂y

7. Let

f(x, y) =

{
xy

(
x2
− y2

)
/
(
x2 + y2

)
, (x, y) �= (0, 0)

0 , (x, y) = 0

(a) If (x, y) �= 0, calculate ∂f/∂x and ∂f/∂y.

• For all points (x, y) �= 0, we have

∂f

∂x
=

(
3x2y − y3

) (
x2 + y2

)
−

(
x3y − xy3

)
(2x)

(x2 + y2)
2

=
x4y +4x2y3 − y5

(x2 + y2)
2
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∂f

∂y
=

(
x3 − 3xy2

) (
x2 + y2

)
−

(
x3y − xy3

)
(2y)

(x2 + y2)
2

=
x5 − 4x3y2 − xy4

(x2 + y2)
2

(b) Show that

∂f

∂x

∣∣∣∣
(0,0)

= 0 =
∂f

∂y

∣∣∣∣
(0,0)

•

∂f

∂x

∣∣∣∣
(0,0)

= lim
(x,y)→(0,0)

At the point (0,0) we will have to be more careful, because f(x, y) is not obviously differentiable

there.

∂f

∂x

∣∣∣∣
(0,0)

≡ limh→0
f(h,0)−f(0,0)

h

= lim
h→0

0− 0

h

= 0

∂f

∂y

∣∣∣∣
(0,0)

≡ limh→0
f(0,h,)−f(0,0)

h

= lim
h→0

0− 0

h

= 0

(c) Show that

∂2f

∂x∂y

∣∣∣∣
(0,0)

= 1 ,
∂2f

∂y∂x

∣∣∣∣
(0,0)

= −1 .

• Again, we have to be a little careful evaluating the partial derivatives at the point (0,0). We have

∂

∂y

∂f

∂x

∣∣∣∣
(0,0)

= lim
h→0

∂f

∂x

∣∣∣
(0,h)

−
∂f

∂x

∣∣∣
(0,0)

h

= lim
h→0

−h − 0

h

= −1

∂

∂x

∂f

∂y

∣∣∣∣
(0,0)

= lim
h→0

∂f

∂y

∣∣∣
(h,0)

−
∂f

∂y

∣∣∣
(0,0)

h

= lim
h→0

h− 0

h

= 1

(d) What went wrong? Why are the mixed partials not equal?

The second partial derivatives exist, but they are not continuous as functions of two variables.

Therefore, Theorem 15 can not be applied in this case.

8. A function u = f(x, y) with continuous second partial derivatives satisfying Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0
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is called a harmonic function. Show that u(x, y) = x3 − 3xy2 is harmonic.

•

∂u

∂x
= 3x2 − 3y2

∂2u

∂x2
= 6x

∂u

∂y
= −6xy

∂2u

∂y2
= −6x

Therefore

∂2u

∂x2
+

∂2u

∂y2
= 6x− 6x = 0 ,

and so u is harmonic.


