Directional Derivatives and the Gradient

In this lecture we specialize to the case where \(f : \mathbb{R}^n \to \mathbb{R} \) is a real-valued function of several variables. For such a function the differential \(Df \) reduces to an \(1 \times n \) matrix, or equivalently an \(n \)-dimensional vector. In fact we have

\[
Df = \begin{pmatrix}
\frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n}
\end{pmatrix}
= \begin{pmatrix}
\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_n}
\end{pmatrix} \equiv \nabla f
\]

so \(Df \) can be identified with the gradient of \(f \).

We'll come back to the gradient in a minute. But first let me introduce the notion of directional derivatives.

Definition 8.1. Let \(f \) be a function from \(\mathbb{R}^n \) to \(\mathbb{R} \), and let \(u \) be a unit vector in \(\mathbb{R}^n \) (i.e., a vector of length 1). Then the directional derivative of \(f \) in the direction \(u \) at the point \(x \) is the limit

\[
D_uf(x) \equiv \left. \frac{df}{dt} (x + tu) \right|_{t=0} \equiv \lim_{t \to 0} \frac{f(x+tu) - f(x)}{t}
\]

The directional derivative of \(f : \mathbb{R}^n \to \mathbb{R} \) along the direction \(u \) at the point \(x \) is interpretable as the rate of change in \(f \) as one moves away from the point \(x \) in the direction of \(u \).

Remark 8.2. We restrict \(u \) to be a unit vector because most often we're interested only in how a function changes when we move in different directions. Since, we care only about the direction of \(u \) and not its magnitude; we simply fix its magnitude to be 1.

Example 8.3. Compute the rate of change of \(f : (x, y, z) \mapsto x^2yz \) in the direction \(u = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) \) at the point \((1,1,0)\).
We need to compute

\[\mathbf{D}_u f(x) = \left. \frac{d}{dt} \left[f(1,1,0) + t \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) \right] \right|_{t=0} \]

\[= \left. \frac{d}{dt} \left(1 + \frac{t}{\sqrt{3}}, 1 + \frac{t}{\sqrt{3}}, 0 - \frac{t}{\sqrt{3}} \right) \right|_{t=0} \]

\[= \left. \frac{d}{dt} \left(\left(1 + \frac{t}{\sqrt{3}}\right)^2 \left(1 + \frac{t}{\sqrt{3}}, -\frac{t}{\sqrt{3}} \right) \right) \right|_{t=0} \]

\[= \left. \left(2 \left(1 + \frac{t}{\sqrt{3}}\right) \left(1 + \frac{t}{\sqrt{3}}, -\frac{t}{\sqrt{3}}\right) \left(1 + \frac{t}{\sqrt{3}}\right) \right) \right|_{t=0} \]

\[+ \left. \left(\left(1 + \frac{t}{\sqrt{3}}\right)^2 \left(\frac{1}{\sqrt{3}}, -\frac{t}{\sqrt{3}} \right) \right) \right|_{t=0} \]

\[+ \left. \left(\left(1 + \frac{t}{\sqrt{3}}\right)^2 \left(1 + \frac{t}{\sqrt{3}}, -\frac{t}{\sqrt{3}}\right) \right) \right|_{t=0} \]

\[= (2) \left(\frac{1}{\sqrt{3}}\right) (1)(0) \]

\[+ (1)^2 \left(1\right) (0) \]

\[+ (1)^2 (1) \left(\frac{1}{\sqrt{3}}\right) \]

\[= -\frac{1}{\sqrt{3}} \]

Below we give a theorem that makes computations such as the one above a lot simpler.

Theorem 8.4. If \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable then all directional derivatives exist and, moreover, the directional derivative of \(f \) in the direction \(\mathbf{u} \) at the point \(x \) is given by

\[\nabla f(x) \cdot \mathbf{u} \]

Proof. Let \(\gamma : \mathbb{R} \to \mathbb{R}^n \) be the function

\[\gamma(t) = x + t\mathbf{u} \]

so that

\[\gamma_1(t) = x_1 + tu_1 \]

\[\gamma_2(t) = x_2 + tu_2 \]

\[\vdots \]

\[\gamma_n(t) = x_n + tu_n \]

and

\[f(x + t\mathbf{u}) = f(\gamma(t)) \]
By the chain rule we have

\[D_u f(x) = \frac{d}{dt} f(x + tu) \bigg|_{t=0} = \frac{d}{dt} (f \circ \gamma) \bigg|_{t=0} = D(f \circ \gamma) \bigg|_{t=0} = Df(\gamma(0)) D\gamma(0) \]

\[= \left(\frac{\partial f}{\partial x_1}(\gamma(0)) \ \frac{\partial f}{\partial x_2}(\gamma(0)) \ \cdots \ \frac{\partial f}{\partial x_n}(\gamma(0)) \right) \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_n \end{array} \right) \]

\[= \left(\frac{\partial f}{\partial x_1}(x) \ \frac{\partial f}{\partial x_2}(x) \ \cdots \ \frac{\partial f}{\partial x_n}(x) \right) \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_n \end{array} \right) = \nabla f(x) \cdot u \]

Example 8.5. Let’s return to the preceding example and use our spanking new formula to compute the directional derivative of \(f(x,y,z) = x^2yz \) along the direction \(u = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) \) at the point \((1,1,0)\).

\[\nabla f(1,1,0) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \bigg|_{(1,1,0)} = (2yz, x^2, x^2) \bigg|_{(1,1,0)} = (0,0,1) \]

So

\[\frac{d}{dt} f((1,1,0) + tu) \bigg|_{t=0} = \nabla f(1,1,0) \cdot u = (0,0,1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) = -\frac{1}{\sqrt{3}} \]

The gradient \(\nabla f \) not only makes the computation of directional derivatives easier, it also makes it easy to identify the direction in which a function increases most rapidly.

Theorem 8.6. Let \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) be a differentiable function and assume that \(\nabla f(x) \neq 0 \). Then the direction of \(\nabla f(x) \) coincides with the direction in which \(f(x) \) is increasing most rapidly.

Proof. We want to determine the direction \(u \) in which a directional derivative

\[D_u f(x) = \frac{d}{dt} f(x + tu) \bigg|_{t=0} \]
is maximized. Using the preceding theorem we have
\[D_u f(x) = \nabla f(x) \cdot u \]
where \(u \) is a unit vector and so
\[\frac{d}{dt} f(x + tu) \bigg|_{t=0} = \nabla f(x) \cos(\theta) \]
The right-hand side is obviously maximized when \(\theta = 0 \); i.e. when \(u \) points in the same direction as \(\nabla f(x) \).

Remark 8.7. Another way of phrasing the result of this theorem is that, when one imagines the graph of \(f \) as a surface with hilltops and valleys, the direction of the \(\nabla f(x) \) corresponds to the direction uphill at the point \(x \).

Here is another application of the gradient.

Theorem 8.8. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a differentiable function and let \(x_0 \) be a point on the level surface
\[S = \{ x \in \mathbb{R}^n \mid f(x) = k \} \]
Then \(\nabla f(x_0) \) is normal to the surface \(S \) at the point \(x_0 \) in the following sense: if \(v \) is the tangent vector at \(t = 0 \) to any curve \(\gamma(t) \) that lies within \(S \) and satisfies \(\gamma(t) = 0 \), then \(v \cdot \nabla f(x_0) = 0 \).

Proof. Let \(\gamma(t) \) be such a curve. Since \(\gamma(t) \) lies in \(S \) for all \(t \) we must have
\[f(\gamma(t)) = k \]
Therefore,
\[0 = \frac{d}{dt}(f \circ \gamma) \bigg|_{t=0} = D f(\gamma(0)) D \gamma(0) \]
\[= \begin{pmatrix} \frac{\partial f}{\partial x_1}(x_0) & \frac{\partial f}{\partial x_2}(x_0) & \cdots & \frac{\partial f}{\partial x_n}(x_0) \end{pmatrix} \begin{pmatrix} \frac{dx_1}{dt}(0) \\ \frac{dx_2}{dt}(0) \\ \vdots \\ \frac{dx_n}{dt}(0) \end{pmatrix} \]
\[= \begin{pmatrix} \frac{\partial f}{\partial x_1}(x_0) & \frac{\partial f}{\partial x_2}(x_0) & \cdots & \frac{\partial f}{\partial x_n}(x_0) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \]
\[= \nabla f(x_0) \cdot v \]
Because the gradient of \(f \) at the point \(x_0 \) is perpendicular to the tangent vector at \(x_0 \) to any curve \(\gamma(t) \) that lives in a level surface \(S = \{ x \in \mathbb{R}^n \mid f(x) = k \} \) it is reasonable to define the plane tangent to the surface \(S \) at the point \(x_0 \) in terms of the gradient.

Definition 8.9. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a differentiable function and let \(S \) be a surface in \(\mathbb{R}^n \) of the form \(S = \{ x \in \mathbb{R}^n \mid f(x) = k \} \), the tangent plane to \(S \) at the point \(x_0 \) is defined by the equation
\[\nabla f(x_0) \cdot (x - x_0) = 0 \]