LECTURE 7

Differentials and the Chain Rule

In this lecture we will elaborate on notion of gradient that we introduced when we discussed the differentiability of maps from \(\mathbb{R}^n \) to \(\mathbb{R}^m \).

Definition 7.1. The **differential** \(\mathbf{Df} \) of a map \(f : U \subset \mathbb{R}^n \to \mathbb{R}^m \) at the point of \(\mathbf{x} \) is the following matrix of partial derivatives

\[
\mathbf{Df}(\mathbf{x}) = \begin{pmatrix}
\frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x})
\end{pmatrix}
\]

In the special case where \(f \) is a function from \(\mathbb{R}^n \) to \(\mathbb{R} \) (i.e., \(m = 1 \)) the differential \(\mathbf{Df}(\mathbf{x}) \) coincides with the gradient \(\nabla f(\mathbf{x}) \) of \(f \) at \(\mathbf{x} \).

Example 7.2. Let \(f : \mathbb{R}^3 \to \mathbb{R} : (x, y, z) \mapsto xyz \). Then

\[
\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z) \right) = (yz, xz, xy) = (y^2z, 2xyz, x^2y)
\]

Example 7.3. Let \(f : \mathbb{R}^2 \to \mathbb{R}^3 : (x, y) \mapsto (xy, x^2 + y^2, y^2) \). Then

\[
\mathbf{Df}(x, y) = \begin{pmatrix}
\frac{\partial f_1}{\partial x}(x, y) & \frac{\partial f_1}{\partial y}(x, y) \\
\frac{\partial f_2}{\partial x}(x, y) & \frac{\partial f_2}{\partial y}(x, y) \\
\frac{\partial f_3}{\partial x}(x, y) & \frac{\partial f_3}{\partial y}(x, y)
\end{pmatrix}
= \begin{pmatrix}
y & x \\
x^2 & 2y \\
x & 2y
\end{pmatrix}
\]

Theorem 7.4. Let \(f \) and \(g \) be functions from \(U \subset \mathbb{R}^n \) to \(\mathbb{R}^m \) that are differentiable at \(\mathbf{x}_0 \in U \). Then

1. \(\mathbf{D}(cf)(\mathbf{x}_0) = c\mathbf{Df}(\mathbf{x}_0) \) if \(c \) is a constant.
2. \(\mathbf{D}(f + g)(\mathbf{x}_0) = \mathbf{Df}(\mathbf{x}_0) + \mathbf{Dg}(\mathbf{x}_0) \) (The addition on the left hand side is addition of functions, the addition on the right hand side is addition of matrices.)

Theorem 7.5. If \(f \) and \(g \) be functions from \(U \subset \mathbb{R}^n \) to \(\mathbb{R} \) that are differentiable at \(\mathbf{x}_0 \in U \). Then

1. \(\nabla(fg)(\mathbf{x}_0) = g(\mathbf{x}_0)\nabla f(\mathbf{x}_0) + f(\mathbf{x}_0)\nabla g(\mathbf{x}_0) \) (Product Rule.)
2. \(\nabla(f/g)(\mathbf{x}_0) = g(\mathbf{x}_0)\nabla f(\mathbf{x}_0) - f(\mathbf{x}_0)\nabla g(\mathbf{x}_0) / [g(\mathbf{x}_0)]^2 \) (Quotient Rule.)

1. The Chain Rule

Let us recall the chain rule for functions \(f \) and \(g \) are each functions of single variable then

\[
\frac{d}{dx}(g \circ f)(x) = \frac{dg}{df} \frac{df}{dx}
\]

or more precisely, regarding \(f \) as a function sending \(x \) to \(f(x) \), and \(g(u) \) as a function sending \(u \) to \(g(u) \):

\[
\frac{d}{dx}(g \circ f)(x) = \frac{dg}{du} \bigg|_{u=f(x)} \frac{df}{dx}(x)
\]
The analog for this chain rule for functions of complex variables has a similar form when expressed in terms of the differentials defined above.

Theorem 7.6. Let \(f : U \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) and \(g : f(U) \subset \mathbb{R}^m \rightarrow \mathbb{R}^p \) be differentiable functions. Then the composed function

\[
g \circ f : \mathbb{R}^n \rightarrow \mathbb{R}^m \rightarrow \mathbb{R}^p
\]

is differentiable and

\[
[D(g \circ f)](x) = [Dg(f(x))] [Df(x)]
\]

where the product of the two differentials on the right hand side is the product of the \(p \times m \) matrix \(Dg(f(x)) \) by the \(m \times n \) matrix \(Df(x) \).

Example 7.7. Suppose \(\gamma : \mathbb{R} \rightarrow \mathbb{R}^3 : t \mapsto (\gamma_x(t), \gamma_y(t), \gamma_z(t)) \) and \(f : \mathbb{R}^3 \rightarrow \mathbb{R} : (x,y,z) \mapsto f(x,y,z) \). Then \(f \circ \gamma : \mathbb{R} \rightarrow \mathbb{R} \) is a function of a single variable and

\[
\frac{d(f \circ \gamma)}{dt} = Df(\gamma(t))D\gamma(t)
\]

\[
= \left(\frac{\partial f}{\partial x} (\gamma(t)) \frac{\partial f}{\partial y} (\gamma(t)) \frac{\partial f}{\partial z} (\gamma(t)) \right) \left(\frac{d\gamma_x}{dt}(t) \frac{d\gamma_y}{dt}(t) \frac{d\gamma_z}{dt}(t) \right)
\]

\[
= \frac{\partial f}{\partial x} (\gamma(t)) \frac{d\gamma_x}{dt}(t) + \frac{\partial f}{\partial y} (\gamma(t)) \frac{d\gamma_y}{dt}(t) + \frac{\partial f}{\partial z} (\gamma(t)) \frac{d\gamma_z}{dt}(t)
\]

\[
\approx \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt}
\]

Example 7.8. Suppose \(f : \mathbb{R}^3 \rightarrow \mathbb{R}^3 : (x,y,z) \mapsto (u,v,w) \) and \(g : \mathbb{R}^3 \rightarrow \mathbb{R} : (u,v,w) \mapsto g(u,v,w) \). Then \(g \circ f : \mathbb{R}^3 \rightarrow \mathbb{R} \) is a function of a three variables and

\[
\nabla (g \circ f) = D(g \circ f)(x,y,z)
\]

\[
= Dg(f(x,y,z))Df(x,y,z)
\]

\[
= \left(\frac{\partial g}{\partial u} \frac{\partial f}{\partial x} + \frac{\partial g}{\partial v} \frac{\partial f}{\partial y} + \frac{\partial g}{\partial w} \frac{\partial f}{\partial z} \right)
\]

\[
= \left(\frac{\partial g}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial y} + \frac{\partial g}{\partial w} \frac{\partial w}{\partial z}, \frac{\partial g}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial y} + \frac{\partial g}{\partial w} \frac{\partial w}{\partial y}, \frac{\partial g}{\partial u} \frac{\partial u}{\partial z} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial z} + \frac{\partial g}{\partial w} \frac{\partial w}{\partial z} \right)
\]