
Solutions to Homework Set 3
(Solutions to Homework Problems from Chapter 2)

Problems from §2.1

2.1.1. Prove that a ≡ b (mod n) if and only if a and b leave the same remainder when divided by n.

Proof.

⇒

Suppose a ≡ b (mod n). Then, by definition, we have

a− b = nk

for some k ∈ Z. Now by the Division Algorithm, a and b can be written uniquely in form

(1)
a = nq + r
b = nq′ + r′

with 0 ≤ r, r′ < n. But then

(2) a = b + nk = (nq′ + r′) + nk = n(q′ + k) + r′

Comparing (??) and (??) we have

a = nq + r , 0 ≤ r < n

a = n(q′ + k) + r′ , 0 ≤ r′ < n .

By the uniqueness property of the division algorithm, we must therefore have r = r′. �

⇐

If a and b leave the same remainder when divided by n then we have

a = nq + r

b = nq′ + r .

Subtracting these two equations yields

a− b = n(q − q′) ,

so

a ≡ b (modn) .

�

2.1.2. If a ∈ Z, prove that a2 is not congruent to 2 modulo 4 or to 3 modulo 4.

• Proof.
By the Division Algorithm any a ∈ Z must have one of the following forms

a =


4k

4k + 1
4k + 2
4k + 3

This implies

a2 =


16k2 = 4(4k2) = 4q

16k2 + 8k + 1 = 4(4k2 + 2k) + 1 = 4r + 1
4(4k2 + 16k + 4 = 4(4k2 + 8k + 1) = 4s

16k2 + 24k + 9 = 4(4k2 + 6k + 2) + 1 = 4t + 1

1
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So

a2 ≡
{

0 (mod 4)
1 (mod 4)

.

�

2.1.3. If a, b are integers such that a ≡ b (mod p) for every positive prime p, prove that a = b.

• Proof. Since the set of prime numbers in Z is infinite, we can always find a prime number p larger
than any given number. In particular we can find a prime number p such that

0 ≤ |a− b| < p .

Now by hypothesis, we have, for this prime p,

a− b = kp

for some k ∈ Z (by the definition of congruence modulo p). Thus, p divides |a − b|. But 0 is the
only non-negative number less than p that is also divisible by p. Thus, |a− b| = 0 or a = b. �

2.1.4. Which of the following congruences have solutions:

(a) x2 ≡ 1 (mod 3)

• We need

x2 − 1 = 3k

By the Division Algorithm, x must have one of three forms

x =

 3t
3t + 1
3t + 2

⇒ x2 − 1 =

 9t2 − 1
9t2 + 6t

9t2 + 12t + 3

Thus, if x has the form x = 3t + 1, then x2 − 1 = 3(3t2 + 2t) and so x2 ≡ 1 (mod 3). �

(b) x2 ≡ 2 (mod 7)

• We need

x2 − 2 = 3k

By the Division Algorithm, x must have one of the seven forms

x =



7k
7k + 1
7k + 2
7k + 3
7k + 4
7k + 5
7k + 6

⇒ x2 − 1 =



49k2 − 2 = 7
(
7k2
)

+ 2
49k2 + 14k − 1 = 7

(
7k2 + 2k − 1

)
+ 6

49k2 + 28k + 2 = 7
(
7k2 + 4k

)
+ 2

49k2 + 42k + 7 = 7
(
7k2 + 6k + 1

)
49k2 + 70k + 14 = 7

(
7k2 + 8k + 2

)
49k2 + 70k + 23 = 7

(
7k2 + 10k + 3

)
+ 2

49k2 + 84 + 34 = 7
(
7k2 + 12k + 4

)
+ 6

Thus, if x has the form x = 7k + 3 or the form x = 7k + 4, then x2 − 2 is an integer multiple of 7
and so x2 ≡ 2 (mod 7). �

(c) x2 ≡ 3 (mod 11)

• This is best handled by trial and error. In order for x2 ≡ 3 (mod 11), we need

x2 − 3 = 11k

for some choice of integers x and k. For x = 0, 1, 2, 3, 4 there is no such k; but for x = 5 we have

52 − 3 = 22 = 2 · 11 ,
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so x = 5 is a solution. x = 6 is also a solution since

62 − 3 = 33 = 3 · 11 .

�

2.1.5. If [a] = [b] in Zn, prove that GCD(a, n) = GCD(b, n).

• Proof.
Since [a] = [b], a ≡ b (mod n) by Theorem 2.3. But then by the definition of congruence

modulo n

a− b = nk

for some k ∈ Z. But this implies

a = nk + b .

Now we apply Lemma 1.7 (if x, y, q, r ∈ Z and x = yq + r, then GCD(x, y) = GCD(y, r) taking
x = a and y = n. Thus,

GCD(a, n) = GCD(n, b) .

�

2.1.6. If GCD(a, n) = 1, prove that there is an integer b such that ab = 1 (mod n).

• Proof.
Since GCD(a, n) = 1, we know by Theorem 1.3 that there exist integers u and v such that

au + nv = 1 .

Hence

au− 1 = −nv .

If we now set b = u and k = −v we have

ab− 1 = nk

which means that ab ≡ 1 (mod n). �

2.1.7. Prove that if p ≥ 5 and p is prime then either [p]6 = [1]6 or [p]6 = [5]6.

• Let p be a prime ≥ 5. Then p is not divisible by 2 or 3. Now consider the a priori possible
congruency classes of [p]6: viz.,

Z6 = {[0]6 , [1]6 , [2]6 , [3]6 , [4]6 , [5]6}

one by one. [p]6 cannot be [0]6 since p is not divisible by 6. For

p ∈ [0]6 =⇒ p ≡ 0 (mod 6 ) =⇒ p− 0 = k6 for some k ∈ Z =⇒ 6 | p (contradiction!)

Similarly,

p− 2 = k6 =⇒ p = k6− 2 = 2 (3k − 1) =⇒ 2 | p (contradiction!)

p ∈ [3]6 =⇒ p− 3 = k′6 =⇒ p = 3 (2k′ − 1) =⇒ 3 | p (contradiction!)

and

p ∈ [4]6 =⇒ p− 4 = k′′6 =⇒ p = 2 (2k′ − 2) =⇒ 2 | p (contradiction!)

The only possibilities left are [p]6 = [1]6 and [p]6 = [5]6. �
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Problems from §2.2

2.2.1. Write out the addition and multiplication tables for Z4.

Addition in Z4

[0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

Multiplication in Z4

[0] [1] [2] [3]
[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [1] [0] [2]
[3] [0] [3] [2] [1]

2.2.2. Prove or disprove: If ab = 0 in Zn, then a = 0 or b = 0.

• Disproof by Counter-Example
Consider multiplication in Z4 as given in the previous problem. One has [2] · [2] = [0], but

[2] 6= [0] in Z4. �

2.2.3 Prove that if p is prime then the only solutions of x2 + x = 0 in Zp are 0 and p− 1.

• Proof.
Let us revert to the original explicit notation for elements of Zp. We want to prove

(3) ([x]� [x])⊕ [x] = [0] (inZp) ⇒ [x] = [0] or[p− 1] .

Now, by the definition of addition and multiplication in Zp statement (??) is equivalent to

[x(x− 1)] = [0] ⇒ [x] = [0] or[p− 1] .

Now if the congruence class in Zp of x2 + x is the same as that of 0, then the difference between
x2 + x and 0 must be divisible by p. Hence, p divides x2 + x− 0 = x2 + x. Now

x2 + x = x(x + 1) .

Since p is prime, and p divides x(x + 1), p must divide either x or x + 1 (by Corollary 1.9). If p
divides x, then qp = x = x − 0 so x is in the same congruence class as 0; i.e., [x] = [0]. If p does
not divide x, then it must divide x + 1; so

x + 1 = q′p

⇒ [x] = [−1] = [p− 1] .

�

2.2.4. Find all [a]in Z5 for which the equation ax = 1 has a solution.

• Let us write down the multiplication table for Z5.
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[0] [1] [2] [3] [4]
[0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4]
[2] [0] [2] [4] [1] [3]
[3] [0] [3] [1] [4] [2]
[4] [0] [4] [3] [2] [1]

So we have

[1]� [1] = 1

[2]� [3] = 1

[4]� [4] = 1

so if a = [1], [2], [3], or [4]then ax = 1 has a solution in Z5. �

2.2.5. Prove that there is no ordering ≺ of Zn such that

(i) ifa ≺ b, andb ≺ c, thena ≺ c;

(ii) ifa ≺ b, thena + c ≺ b + c for everyc ∈ Zn .

• Proof.
By an ordering on Zn we mean a rule that tells you whether or not pairs of elements of Zn.

In addition to the conditions given above, we must assume that the ordering is complete in the
sense that if a 6= b then either a ≺ b or b ≺ a.

So assume we have such a relation on Zn. Since [0]and [1]are distinct congugacy classes in Zn,
we must then have either [0] ≺ [1] or [1] ≺ [0].

Assume [0] ≺ [1]. Then by property (ii) we must have

[0] + [c] ≺ [1] + [c] , ∀ [c] ∈ Zn .

Since [0] + [c] = [c] and [1] + [c] = [c + 1], we then have

[c] ≺ [c + 1] , ∀ [c] ∈ Zn .

Thus,

(4) [0] ≺ [1] ≺ [2] ≺ · · · ≺ [n− 1] ≺ [n] ≺ [n + 1] · · · .

Applying Property (i) recursively,

[1] ≺ [2] and[2] ≺ [3] ⇒ [1] ≺ [3]

[1] ≺ [3] and[3] ≺ [4] ⇒ [1] ≺ [4]

[1] ≺ [4] and[4] ≺ [5] ⇒ [1] ≺ [5]

etc.,

we can conclude that [1] ≺ [n]. But [n] = [0] in Zn. So [1] ≺ [0]. But this contradicts our
assumption that [0] ≺ [1]. Hence no such ordering exists.

The case when [1] ≺ [0] is treated similiarly. �

Problems from §2.3

2.3.1 If n is composite, prove that there exists a, b ∈ Zn such that a 6= [0] and b 6= [0] but ab = [0].

• Proof.
Assume n to be positive (otherwise, we have to define Zn for n < 0; which can be done, but

with no particular gain). If n is composite then n has a factorization

n = pq
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with

1 < p ≤ q < n .

In view of the inequality above n does not divide p nor does n divide q, so

[p] 6= [0] and [q] 6= [0] .

However,

[p][q] = [pq] = [n] = [0] .

Setting a = [p] and b = [q] we arrive at the desired conclusion. �

2.3.2 Let p be prime and assume that a 6= 0 in Zp. Prove that for any b ∈ Zp, the equation ax = b has a
solution.

• Proof.
By Theorem 2.8, the equation ax′ = 1 always has a solution in Zp, for every a 6= [0] if p is

prime. Multiplying both sides by b ∈ Zp, yields

bax′ = b

Setting x = bx′ we see that every b ∈ Zp has a factorization

b = ax

for every [a] 6= [0] in Zp. �

2.3.3. Let a 6= [0] in Zn. Prove that ax = [0] has a nonzero solution in Zn if and only if ax = [1] has no
solution.

• Proof.
⇒

Suppose a 6= [0], b 6= [0] and that ab = [0]. We aim to show that ax = [1] has no solution. We will
use a proof by contradiction. Suppose c is a solution of ax = [1]. Then

b = b · 1 = b(ac) = (ab)c = [0] · c = 0 .

But this contradicts our original hypothesis that b is a nonzero solution of ax = [0]. Hence, there
can be no solution of ax = [1].
⇐

Suppose a 6= [0] and ax = [1] has no solution. We aim to show that ax = [0] has a nonzero solution
in Zn. Let z be the integer, lying between 1 and n−1 representing the congruence class of a ∈ Zn;
i.e.,

[z] = a .

We first note that, by Corollary 2.9, GCD(z, n) = 1 if and only if ax = [1] has a solution in Zn.
Since the latter is not so, GCD(z, n) 6= 1 and so z and n must share a common divisor greater
than 1, call it t. We thus have

z = rt , n = st .

By construction 1 ≤ s < n, and so the congruence class of s is not equal to [0]. But

a[s] = [z][s] = [rt][s] = [r][st] = [r][0] = [0] .

Hence, [s] is a nonzero solution of ax = [0] in Zn. �

2.3.4. Solve the following equations.
(a) 12x = 2 in Z19.
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• The fastest approach to this problem might be trial and error. Simply compute the multiples 0 ·12,
1 · 12, . . . , 18 · 12 and figure out which of these products have remainder 2 when divided by 19.
Then we’d have

k · 12 = q · 19 + 2

or
2 ≡ k · 12 (mod 19)

and so
[12]19 [k]19 = [2]19

hence the solution of
[12]19 X = [2]19

will be [k]19. Such a trial and error procedure reveals

192 = (10)(19) + 2 ⇒ [12]19 [16]19 = [2]19 ⇒ x = [16]19

• Next, we give a more systematic approach which is also applicable for large integers (where the
trial and error procedure because tedious if not impractical). Apply the Euclidean Algorithm to
the pair (19, 12).

19 = (1) (12) + 7

12 = (1) (7) + 5

7 = (1) (5) + 2

5 = (2) (2) + 1

1 = (1) (1) + 0

The point here is not to figure out the GCD of 19 and 12 (which is obviously 1 since 19 is prime),
but to obtain a useful arrangemet of substitutions what will allows us to express 1 as an integer
linear combination of 19 and 12. That is to find numbers u and v so that

1 = u (19) + v (12)

The utility of this equation well become clear once we get a suitable choice of v and u.
We re-write the sequence of Euclidean Algorithm equations so the remainders are isolated on

the left hand side

1 = 5− (2) (2) (a)

2 = 7− (1) (5) = 7− 5 (b)

5 = 12− (1) (7) = 12− 7 (c)

7 = 19− (1) (12) = 19− 12 (d)

Now the idea is to use back substitution to eliminate all the intermediary remainders: substituting
the right hand side of (d) for the number 7 in (c) yields

(e) 5 = 12− (19− 12) = (2)(12)− 19

We’ve now expressed 7 and 5 in the form 12u + 19v. Substituting the right hand sides of (d) and
(e) into (b) yields

(f) 2 = (19− 12)− ((2) (12)− 19) = (2)(19)− (3)(12)

Finally, we substitute the right hands sides of (e) and (f) into (a) to get

1 = ((2) (12)− 19)− 2 ((2) (19)− (3) (12)) = (−5) (19) + (8) (12)

The last equality just being a check on our calculation. We now have

(12) (8)− (5) (19) = 1

Taking congruence classes of both sides modulo 19 we get

[12]19 [8]19 − [5]19 [19]19 = [1]19

or since [19]19 = 0,
[12]19 [8]19 = [1]19 .
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Now simply multiply both sides by [2]19, to obtain

[2]19 [12]19 [8]19 = [2]19 [1]19

or using [2]19 [8]19 = [16]19, and [2]19 [1]19 = [2]19

[12]19 [16]19 = [2]19

Thus,

X = [16]19
is the solution to

[12]19 X = [2]19 .

�

(b) 7x = 2 in Z24.

• Either method used in part (a) will produce

(7) (14) = 98 = (4) (24) + 2 ⇒ [7]24 [14]24 = [2]24 ⇒ x = [14]24

�

(c) 31x = 1 in Z50.

• Either method used in part (a) will produce

(31)(20) = 651 = (7)(50) + 1 ⇒ [31]50 [20]50 = [1]50 ⇒ x = [20]50

�

(d) 34x = 1 in Z97.

• Here only the second method of part (a) is actually practical. We’ll do the calculation explicitly.
First we apply the Euclidean algorithm to the pair (97, 34) .

97 = (2) (34) + 29

34 = (1) (29) + 5

29 = (5) (5) + 4

5 = (1) (4) + 1

Now we back-substitute to express 1 as an integer linear combination of 97 and 34. We have

1 = 5− (1) (4) (a)

4 = 29− (5) (5) (b)

5 = 34− (1) (29) (c)

29 = 97− (2) (34) (d)

and so

29 = 1 · 97− 2 · 34

5 = 34− 1 · 29 = 34− (1 · 97− 2 · 34) = −97 + 3 · 34

4 = 29− 5 · 5 = (97− 2 · 34)− 5 (−97 + 3 · 34) = 6 · 97− 17 · 34

1 = 5− 4 = (−97 + 3 · 34)− (6 · 97− 17 · 34)

= −7 · 97 + 20 · 34

or

20 · 34− 7 · 97 = 1



9

So
1 ≡ (20) (34) (mod 97)

so
[34]97 [20]97 = [1]97

and so [20]97 is the solution of
[34]97 X = [1]97

�


