Solutions to Homework Set 3

(Solutions to Homework Problems from Chapter 2)

Problems from §2.1

2.1.1. Prove that $a \equiv b(\bmod n)$ if and only if a and b leave the same remainder when divided by n.

Proof.
\Rightarrow
Suppose $a \equiv b(\bmod n)$. Then, by definition, we have

$$
a-b=n k
$$

for some $k \in \mathbb{Z}$. Now by the Division Algorithm, a and b can be written uniquely in form

$$
\begin{align*}
a & =n q+r \\
b & =n q^{\prime}+r^{\prime} \tag{1}
\end{align*}
$$

with $0 \leq r, r^{\prime}<n$. But then

$$
\begin{equation*}
a=b+n k=\left(n q^{\prime}+r^{\prime}\right)+n k=n\left(q^{\prime}+k\right)+r^{\prime} \tag{2}
\end{equation*}
$$

Comparing (??) and (??) we have

$$
\begin{aligned}
& a=n q+r \quad, \quad 0 \leq r<n \\
& a=n\left(q^{\prime}+k\right)+r^{\prime} \quad, \quad 0 \leq r^{\prime}<n
\end{aligned}
$$

By the uniqueness property of the division algorithm, we must therefore have $r=r^{\prime}$.
\Leftarrow
If a and b leave the same remainder when divided by n then we have

$$
\begin{aligned}
a & =n q+r \\
b & =n q^{\prime}+r
\end{aligned}
$$

Subtracting these two equations yields

$$
a-b=n\left(q-q^{\prime}\right)
$$

so

$$
a \equiv b \quad(\bmod n)
$$

2.1.2. If $a \in \mathbb{Z}$, prove that a^{2} is not congruent to 2 modulo 4 or to 3 modulo 4 .

- Proof.

By the Division Algorithm any $a \in \mathbb{Z}$ must have one of the following forms

$$
a=\left\{\begin{array}{c}
4 k \\
4 k+1 \\
4 k+2 \\
4 k+3
\end{array}\right.
$$

This implies

$$
a^{2}=\left\{\begin{array}{c}
16 k^{2}=4\left(4 k^{2}\right)=4 q \\
16 k^{2}+8 k+1=4\left(4 k^{2}+2 k\right)+1=4 r+1 \\
4\left(4 k^{2}+16 k+4=4\left(4 k^{2}+8 k+1\right)=4 s\right. \\
16 k^{2}+24 k+9=4\left(4 k^{2}+6 k+2\right)+1=4 t+1
\end{array}\right.
$$

So

$$
a^{2} \equiv\left\{\begin{array}{l}
0(\bmod 4) \\
1(\bmod 4)
\end{array}\right.
$$

2.1.3. If a, b are integers such that $a \equiv b(\bmod p)$ for every positive prime p, prove that $a=b$.

- Proof. Since the set of prime numbers in \mathbb{Z} is infinite, we can always find a prime number p larger than any given number. In particular we can find a prime number p such that

$$
0 \leq|a-b|<p
$$

Now by hypothesis, we have, for this prime p,

$$
a-b=k p
$$

for some $k \in \mathbb{Z}$ (by the definition of congruence modulo p). Thus, p divides $|a-b|$. But 0 is the only non-negative number less than p that is also divisible by p. Thus, $|a-b|=0$ or $a=b$.
2.1.4. Which of the following congruences have solutions:
(a) $x^{2} \equiv 1(\bmod 3)$

- We need

$$
x^{2}-1=3 k
$$

By the Division Algorithm, x must have one of three forms

$$
x=\left\{\begin{array}{c}
3 t \\
3 t+1 \\
3 t+2
\end{array} \quad \Rightarrow \quad x^{2}-1=\left\{\begin{array}{c}
9 t^{2}-1 \\
9 t^{2}+6 t \\
9 t^{2}+12 t+3
\end{array}\right.\right.
$$

Thus, if x has the form $x=3 t+1$, then $x^{2}-1=3\left(3 t^{2}+2 t\right)$ and so $x^{2} \equiv 1(\bmod 3)$.
(b) $x^{2} \equiv 2(\bmod 7)$

- We need

$$
x^{2}-2=3 k
$$

By the Division Algorithm, x must have one of the seven forms

$$
x=\left\{\begin{array}{l}
7 k \\
7 k+1 \\
7 k+2 \\
7 k+3 \\
7 k+4 \\
7 k+5 \\
7 k+6
\end{array} \Rightarrow x^{2}-1= \begin{cases}49 k^{2}-2 & =7\left(7 k^{2}\right)+2 \\
49 k^{2}+14 k-1 & =7\left(7 k^{2}+2 k-1\right)+6 \\
49 k^{2}+28 k+2 & =7\left(7 k^{2}+4 k\right)+2 \\
49 k^{2}+42 k+7 & =7\left(7 k^{2}+6 k+1\right) \\
49 k^{2}+70 k+14 & =7\left(7 k^{2}+8 k+2\right) \\
49 k^{2}+70 k+23 & =7\left(7 k^{2}+10 k+3\right)+2 \\
49 k^{2}+84+34 & =7\left(7 k^{2}+12 k+4\right)+6\end{cases}\right.
$$

Thus, if x has the form $x=7 k+3$ or the form $x=7 k+4$, then $x^{2}-2$ is an integer multiple of 7 and so $x^{2} \equiv 2(\bmod 7)$.
(c) $x^{2} \equiv 3(\bmod 11)$

- This is best handled by trial and error. In order for $x^{2} \equiv 3(\bmod 11)$, we need

$$
x^{2}-3=11 k
$$

for some choice of integers x and k. For $x=0,1,2,3,4$ there is no such k; but for $x=5$ we have

$$
5^{2}-3=22=2 \cdot 11
$$

so $x=5$ is a solution. $x=6$ is also a solution since

$$
6^{2}-3=33=3 \cdot 11
$$

2.1.5. If $[a]=[b]$ in \mathbb{Z}_{n}, prove that $G C D(a, n)=G C D(b, n)$.

- Proof.

Since $[a]=[b], a \equiv b(\bmod n)$ by Theorem 2.3. But then by the definition of congruence modulo n

$$
a-b=n k
$$

for some $k \in \mathbb{Z}$. But this implies

$$
a=n k+b
$$

Now we apply Lemma 1.7 (if $x, y, q, r \in \mathbb{Z}$ and $x=y q+r$, then $G C D(x, y)=G C D(y, r)$ taking $x=a$ and $y=n$. Thus,

$$
G C D(a, n)=G C D(n, b)
$$

2.1.6. If $G C D(a, n)=1$, prove that there is an integer b such that $a b=1(\bmod n)$.

- Proof.

Since $G C D(a, n)=1$, we know by Theorem 1.3 that there exist integers u and v such that

$$
a u+n v=1
$$

Hence

$$
a u-1=-n v
$$

If we now set $b=u$ and $k=-v$ we have

$$
a b-1=n k
$$

which means that $a b \equiv 1(\bmod n)$.
2.1.7. Prove that if $p \geq 5$ and p is prime then either $[p]_{6}=[1]_{6}$ or $[p]_{6}=[5]_{6}$.

- Let p be a prime ≥ 5. Then p is not divisible by 2 or 3 . Now consider the a priori possible congruency classes of $[p]_{6}$: viz.,

$$
\mathbb{Z}_{6}=\left\{[0]_{6},[1]_{6},[2]_{6},[3]_{6},[4]_{6},[5]_{6}\right\}
$$

one by one. $[p]_{6}$ cannot be $[0]_{6}$ since p is not divisible by 6 . For
$p \in[0]_{6} \quad \Longrightarrow \quad p \equiv 0 \quad(\bmod 6) \quad \Longrightarrow \quad p-0=k 6$ for some $k \in \mathbb{Z} \quad \Longrightarrow \quad 6 \mid p \quad$ (contradiction!)
Similarly,

$$
\begin{aligned}
p-2=k 6 & \Longrightarrow p=k 6-2=2(3 k-1) \quad \Longrightarrow \quad 2 \mid p \quad \text { (contradiction!) } \\
p \in[3]_{6} & \Longrightarrow p-3=k^{\prime} 6 \quad \Longrightarrow \quad p=3\left(2 k^{\prime}-1\right) \quad \Longrightarrow \quad 3 \mid p \quad \text { (contradiction!) }
\end{aligned}
$$

and

$$
p \in[4]_{6} \quad \Longrightarrow \quad p-4=k^{\prime \prime} 6 \quad \Longrightarrow \quad p=2\left(2 k^{\prime}-2\right) \quad \Longrightarrow \quad 2 \mid p \quad \text { (contradiction!) }
$$

The only possibilities left are $[p]_{6}=[1]_{6}$ and $[p]_{6}=[5]_{6}$.

Problems from §2.2

2.2.1. Write out the addition and multiplication tables for \mathbb{Z}_{4}.

Addition in \mathbb{Z}_{4}

	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$
$[1]$	$[1]$	$[2]$	$[3]$	$[0]$
$[2]$	$[2]$	$[3]$	$[0]$	$[1]$
$[3]$	$[3]$	$[0]$	$[1]$	$[2]$

Multiplication in \mathbb{Z}_{4}

	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$
$[2]$	$[0]$	$[1]$	$[0]$	$[2]$
$[3]$	$[0]$	$[3]$	$[2]$	$[1]$

2.2.2. Prove or disprove: If $a b=0$ in \mathbb{Z}_{n}, then $a=0$ or $b=0$.

- Disproof by Counter-Example

Consider multiplication in Z_{4} as given in the previous problem. One has [2] $\cdot[2]=[0]$, but $[2] \neq[0]$ in \mathbb{Z}_{4}.
2.2.3 Prove that if p is prime then the only solutions of $x^{2}+x=0$ in \mathbb{Z}_{p} are 0 and $p-1$.

- Proof.

Let us revert to the original explicit notation for elements of \mathbb{Z}_{p}. We want to prove

$$
\begin{equation*}
([x] \odot[x]) \oplus[x]=[0] \quad\left(\text { in } \mathbb{Z}_{p}\right) \quad \Rightarrow \quad[x]=[0] \text { or }[p-1] \tag{3}
\end{equation*}
$$

Now, by the definition of addition and multiplication in \mathbb{Z}_{p} statement (??) is equivalent to

$$
[x(x-1)]=[0] \quad \Rightarrow \quad[x]=[0] \text { or }[p-1]
$$

Now if the congruence class in \mathbb{Z}_{p} of $x^{2}+x$ is the same as that of 0 , then the difference between $x^{2}+x$ and 0 must be divisible by p. Hence, p divides $x^{2}+x-0=x^{2}+x$. Now

$$
x^{2}+x=x(x+1)
$$

Since p is prime, and p divides $x(x+1$), p must divide either x or $x+1$ (by Corollary 1.9). If p divides x, then $q p=x=x-0$ so x is in the same congruence class as 0 ; i.e., $[x]=[0]$. If p does not divide x, then it must divide $x+1$; so

$$
\begin{gathered}
x+1=q^{\prime} p \\
\Rightarrow \quad[x]=[-1]=[p-1]
\end{gathered}
$$

2.2.4. Find all [a]in \mathbb{Z}_{5} for which the equation $a x=1$ has a solution.

- Let us write down the multiplication table for \mathbb{Z}_{5}.

	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$[2]$	$[0]$	$[2]$	$[4]$	$[1]$	$[3]$
$[3]$	$[0]$	$[3]$	$[1]$	$[4]$	$[2]$
$[4]$	$[0]$	$[4]$	$[3]$	$[2]$	$[1]$

So we have

$$
\begin{aligned}
& {[1] \odot[1]=1} \\
& {[2] \odot[3]=1} \\
& {[4] \odot[4]=1}
\end{aligned}
$$

so if $a=[1]$, [2], [3], or [4]then $a x=1$ has a solution in \mathbb{Z}_{5}.
2.2.5. Prove that there is no ordering \prec of \mathbb{Z}_{n} such that

$$
\begin{equation*}
\text { if } a \prec b \text {, and } b \prec c \text {, then } a \prec c \text {; } \tag{i}
\end{equation*}
$$

(ii) if $a \prec b$, then $a+c \prec b+c$ for every $c \in \mathbb{Z}_{n}$.

- Proof.

By an ordering on \mathbb{Z}_{n} we mean a rule that tells you whether or not pairs of elements of Z_{n}. In addition to the conditions given above, we must assume that the ordering is complete in the sense that if $a \neq b$ then either $a \prec b$ or $b \prec a$.

So assume we have such a relation on \mathbb{Z}_{n}. Since [0]and [1]are distinct congugacy classes in \mathbb{Z}_{n}, we must then have either $[0] \prec[1]$ or $[1] \prec[0]$.

Assume [0] $\prec[1]$. Then by property (ii) we must have

$$
[0]+[c] \prec[1]+[c] \quad, \quad \forall[c] \in \mathbb{Z}_{n}
$$

Since $[0]+[c]=[c]$ and $[1]+[c]=[c+1]$, we then have

$$
[c] \prec[c+1] \quad, \quad \forall[c] \in \mathbb{Z}_{n}
$$

Thus,

$$
\begin{equation*}
[0] \prec[1] \prec[2] \prec \cdots \prec[n-1] \prec[n] \prec[n+1] \cdots \quad . \tag{4}
\end{equation*}
$$

Applying Property (i) recursively,

$$
\begin{array}{llll}
{[1] \prec} & {[2] \text { and }[2] \prec[3]} & \Rightarrow & {[1] \prec[3]} \\
{[1] \prec} & {[3] \text { and }[3] \prec[4]} & \Rightarrow & {[1] \prec[4]} \\
{[1] \prec} & {[4] \text { and }[4] \prec[5]} & \Rightarrow & {[1] \prec[5]} \\
& \\
& \\
& \text { etc. },
\end{array}
$$

we can conclude that $[1] \prec[n]$. But $[n]=[0]$ in \mathbb{Z}_{n}. So $[1] \prec[0]$. But this contradicts our assumption that $[0] \prec[1]$. Hence no such ordering exists.

The case when $[1] \prec[0]$ is treated similiarly.

Problems from §2.3

2.3.1 If n is composite, prove that there exists $a, b \in \mathbb{Z}_{n}$ such that $a \neq[0]$ and $b \neq[0]$ but $a b=[0]$.

- Proof.

Assume n to be positive (otherwise, we have to define \mathbb{Z}_{n} for $n<0$; which can be done, but with no particular gain). If n is composite then n has a factorization

$$
n=p q
$$

with

$$
1<p \leq q<n
$$

In view of the inequality above n does not divide p nor does n divide q, so

$$
[p] \neq[0] \quad \text { and } \quad[q] \neq[0]
$$

However,

$$
[p][q]=[p q]=[n]=[0] .
$$

Setting $a=[p]$ and $b=[q]$ we arrive at the desired conclusion.
2.3.2 Let p be prime and assume that $a \neq 0$ in \mathbb{Z}_{p}. Prove that for any $b \in \mathbb{Z}_{p}$, the equation $a x=b$ has a solution.

- Proof.

By Theorem 2.8, the equation $a x^{\prime}=1$ always has a solution in \mathbb{Z}_{p}, for every $a \neq[0]$ if p is prime. Multiplying both sides by $b \in \mathbb{Z}_{p}$, yields

$$
b a x^{\prime}=b
$$

Setting $x=b x^{\prime}$ we see that every $b \in \mathbb{Z}_{p}$ has a factorization

$$
b=a x
$$

for every $[a] \neq[0]$ in \mathbb{Z}_{p}.
2.3.3. Let $a \neq[0]$ in \mathbb{Z}_{n}. Prove that $a x=[0]$ has a nonzero solution in \mathbb{Z}_{n} if and only if $a x=[1]$ has no solution.

- Proof.
\Rightarrow
Suppose $a \neq[0], b \neq[0]$ and that $a b=[0]$. We aim to show that $a x=[1]$ has no solution. We will use a proof by contradiction. Suppose c is a solution of $a x=[1]$. Then

$$
b=b \cdot 1=b(a c)=(a b) c=[0] \cdot c=0
$$

But this contradicts our original hypothesis that b is a nonzero solution of $a x=[0]$. Hence, there can be no solution of $a x=[1]$.

$$
\Leftarrow
$$

Suppose $a \neq[0]$ and $a x=[1]$ has no solution. We aim to show that $a x=[0]$ has a nonzero solution in \mathbb{Z}_{n}. Let z be the integer, lying between 1 and $n-1$ representing the congruence class of $a \in \mathbb{Z}_{n}$; i.e.,

$$
[z]=a
$$

We first note that, by Corollary 2.9, $\operatorname{GCD}(z, n)=1$ if and only if $a x=[1]$ has a solution in \mathbb{Z}_{n}. Since the latter is not so, $\operatorname{GCD}(z, n) \neq 1$ and so z and n must share a common divisor greater than 1 , call it t. We thus have

$$
z=r t \quad, \quad n=s t
$$

By construction $1 \leq s<n$, and so the congruence class of s is not equal to [0]. But

$$
a[s]=[z][s]=[r t][s]=[r][s t]=[r][0]=[0] .
$$

Hence, $[s]$ is a nonzero solution of $a x=[0]$ in \mathbb{Z}_{n}.
2.3.4. Solve the following equations.
(a) $12 x=2$ in \mathbb{Z}_{19}.

- The fastest approach to this problem might be trial and error. Simply compute the multiples $0 \cdot 12$, $1 \cdot 12, \ldots, 18 \cdot 12$ and figure out which of these products have remainder 2 when divided by 19 . Then we'd have

$$
k \cdot 12=q \cdot 19+2
$$

or

$$
2 \equiv k \cdot 12 \quad(\bmod 19)
$$

and so

$$
[12]_{19}[k]_{19}=[2]_{19}
$$

hence the solution of

$$
[12]_{19} X=[2]_{19}
$$

will be $[k]_{19}$. Such a trial and error procedure reveals

$$
192=(10)(19)+2 \quad \Rightarrow \quad[12]_{19}[16]_{19}=[2]_{19} \quad \Rightarrow \quad x=[16]_{19}
$$

- Next, we give a more systematic approach which is also applicable for large integers (where the trial and error procedure because tedious if not impractical). Apply the Euclidean Algorithm to the pair $(19,12)$.

$$
\begin{aligned}
19 & =(1)(12)+7 \\
12 & =(1)(7)+5 \\
7 & =(1)(5)+2 \\
5 & =(2)(2)+1 \\
1 & =(1)(1)+0
\end{aligned}
$$

The point here is not to figure out the GCD of 19 and 12 (which is obviously 1 since 19 is prime), but to obtain a useful arrangemet of substitutions what will allows us to express 1 as an integer linear combination of 19 and 12 . That is to find numbers u and v so that

$$
1=u(19)+v(12)
$$

The utility of this equation well become clear once we get a suitable choice of v and u.
We re-write the sequence of Euclidean Algorithm equations so the remainders are isolated on the left hand side

$$
\begin{align*}
& 1=5-(2)(2) \tag{a}\\
& 2=7-(1)(5)=7-5 \tag{b}\\
& 5=12-(1)(7)=12-7 \tag{c}\\
& 7=19-(1)(12)=19-12 \tag{d}
\end{align*}
$$

Now the idea is to use back substitution to eliminate all the intermediary remainders: substituting the right hand side of (d) for the number 7 in (c) yields

$$
\begin{equation*}
5=12-(19-12)=(2)(12)-19 \tag{e}
\end{equation*}
$$

We've now expressed 7 and 5 in the form $12 u+19 v$. Substituting the right hand sides of (d) and (e) into (b) yields

$$
2=(19-12)-((2)(12)-19)=(2)(19)-(3)(12)
$$

Finally, we substitute the right hands sides of (e) and (f) into (a) to get

$$
1=((2)(12)-19)-2((2)(19)-(3)(12))=(-5)(19)+(8)(12)
$$

The last equality just being a check on our calculation. We now have

$$
(12)(8)-(5)(19)=1
$$

Taking congruence classes of both sides modulo 19 we get

$$
[12]_{19}[8]_{19}-[5]_{19}[19]_{19}=[1]_{19}
$$

or since $[19]_{19}=0$,

$$
[12]_{19}[8]_{19}=[1]_{19} .
$$

Now simply multiply both sides by $[2]_{19}$, to obtain

$$
[2]_{19}[12]_{19}[8]_{19}=[2]_{19}[1]_{19}
$$

or using $[2]_{19}[8]_{19}=[16]_{19}$, and $[2]_{19}[1]_{19}=[2]_{19}$

$$
[12]_{19}[16]_{19}=[2]_{19}
$$

Thus,

$$
X=[16]_{19}
$$

is the solution to

$$
[12]_{19} X=[2]_{19} .
$$

(b) $7 x=2$ in \mathbb{Z}_{24}.

- Either method used in part (a) will produce

$$
(7)(14)=98=(4)(24)+2 \quad \Rightarrow \quad[7]_{24}[14]_{24}=[2]_{24} \quad \Rightarrow \quad x=[14]_{24}
$$

(c) $31 x=1$ in \mathbb{Z}_{50}.

- Either method used in part (a) will produce

$$
(31)(20)=651=(7)(50)+1 \quad \Rightarrow \quad[31]_{50}[20]_{50}=[1]_{50} \quad \Rightarrow \quad x=[20]_{50}
$$

(d) $34 x=1$ in \mathbb{Z}_{97}.

- Here only the second method of part (a) is actually practical. We'll do the calculation explicitly. First we apply the Euclidean algorithm to the pair $(97,34)$.

$$
\begin{aligned}
97 & =(2)(34)+29 \\
34 & =(1)(29)+5 \\
29 & =(5)(5)+4 \\
5 & =(1)(4)+1
\end{aligned}
$$

Now we back-substitute to express 1 as an integer linear combination of 97 and 34 . We have

$$
\begin{align*}
1 & =5-(1)(4) \tag{a}\\
4 & =29-(5)(5) \tag{b}\\
5 & =34-(1)(29) \tag{c}\\
29 & =97-(2)(34)
\end{align*}
$$

(d)
and so

$$
\begin{aligned}
29 & =1 \cdot 97-2 \cdot 34 \\
5 & =34-1 \cdot 29=34-(1 \cdot 97-2 \cdot 34)=-97+3 \cdot 34 \\
4 & =29-5 \cdot 5=(97-2 \cdot 34)-5(-97+3 \cdot 34)=6 \cdot 97-17 \cdot 34 \\
1 & =5-4=(-97+3 \cdot 34)-(6 \cdot 97-17 \cdot 34) \\
& =-7 \cdot 97+20 \cdot 34
\end{aligned}
$$

or

$$
20 \cdot 34-7 \cdot 97=1
$$

So

SO
and so $[20]_{97}$ is the solution of

$$
\begin{gathered}
1 \equiv(20)(34) \quad(\bmod 97) \\
{[34]_{97}[20]_{97}=[1]_{97}} \\
{[34]_{97} X=[1]_{97}}
\end{gathered}
$$

