Examples of Groups and Group Properties

Example 25.1. Show that the set of matrices

\[S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R}, \ ad - bc \neq 0 \right\} \]

is a group when the multiplication rule is matrix multiplication.

We need to show three things: (i) that the multiplication rule is associative, (ii) that \(S \) has a multiplicative identity element, and (iii) that every element \(A \in S \) has a multiplicative inverse in \(S \).

(i) The multiplication rule for \(S \) is associative because matrix multiplication is associative.

(ii) The matrix \(I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) is in \(S \) and has the property that \(AI = A = IA \). So \(S \) has \(I \) as its identity element.

(iii) If \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), then \(\det A = ad - bc \). From Linear Algebra one know that \(\det A \neq 0 \iff A^{-1} \) exists. Moreover,

\[\det (A^{-1}) = \frac{1}{\det (A)} = \frac{1}{ad - bc} \neq 0 \]

so \(A^{-1} \in S \). Hence, every element of \(S \) has an inverse in \(S \).

Having verified the three defining properties of a group, we conclude \(S \) is a group.

Example 25.2. Show that the set

\(U_n = \{ u \in \mathbb{Z}_n \mid u \text{ is a unit in } \mathbb{Z}_n \} \)

is a group when group multiplication is the usual multiplication in \(\mathbb{Z}_n \).

(i) Multiplication in \(\mathbb{Z}_n \) is associative and the multiplication rule in \(U_n \) is associative.

(ii) The element \([1]_n \in \mathbb{Z}_n\) is a unit in \(\mathbb{Z}_n \). (Recall a unit in a ring \(R \) with identity \(1_R \) is an element \(a \in R \) such that there exists \(b, b' \in R \) such that \(ab = 1_R = b'a \).) Clearly, \([1]_n\) is the multiplicative identity in \(U_n \) since \([1]_n [1]_n = [1]_n \).

(iii) If \(a \in U_n \) then \(a \) is a unit in \(\mathbb{Z}_n \) and so there exists \(b \in \mathbb{Z}_n \) such that \(ab = [1]_n \), hence \(a \) has a multiplicative inverse \(b \) and, moreover, this inverse is also a unit in \(\mathbb{Z}_n \) and so belongs to \(U_n \).

Example 25.3. What is the order of \(U_p \) when \(p \) is prime?

The order of a group is the number of elements in the group (as a set). Now we know that \(\mathbb{Z}_p \) has exactly \(p \) elements \([0]_p, [1]_p, \ldots, [p - 1]_p\). Moreover, since \(\mathbb{Z}_p \) is a field when \(p \) is prime, every nonzero element of \(\mathbb{Z}_p \) is a unit. This means \(U_n \) consists of every element of \(\mathbb{Z}_p \) except \([0]_p\). Thus, the order of \(U_p \) is \(p - 1 \).

Example 25.4. Prove that the order of \(a^{-1} \) is equal to the order of \(a^{-1} \).
Suppose first that \(e \) is of finite order. Then there exists a smallest positive integer \(n \) such that \(a^n = e \). Since

\[e = a^n = a(a^{n-1}) \]

we know \(a^{n-1} = a^{-1} \). But then

\[(a^{-1})^n = (a^{n-1})^n = a^{n(n-1)} = (a^n)^{n-1} = (e)^{n-1} = e \]

and so \(a^{-1} \) has finite order \(\leq n \).

The problem is now to show that \(n \) is in fact the smallest power of \(a^{-1} \) that produces the identity element \(e \). Suppose the order of \(a^{-1} \) is \(k \leq n \). Then

\[e = (a^{-1})^k = (a^{n-1})^k = a^{kn-k} \implies a^k = a^ke = a^ka^{kn-k} = a^{kn} \]

Now according to Theorem 7.8, if \(a \) has order \(n \), then \(a^i = a^j \iff i \equiv j \pmod{n} \). So

\[a^k = a^{kn} \implies k = kn \pmod{n} \implies k = 0 \pmod{n} \implies k = pn \text{ for some positive integer } p \]

But the only positive multiple of \(n \) that’s less than or equal to \(n \) is \(n \) itself. Therefore, \(k = n \), and \(|a^{-1}| = |a| \).

EXAMPLE 25.5. Let \(G \) be a group and let \(a \in G \). Prove that the set

\[N_a = \{ g \in G \mid ga = ag \} \]

is a subgroup of \(G \).

We need to show three things: (i) that \(N_a \) is closed under multiplication, (ii) that the identity element of \(G \) is in \(N_a \) and (iii) that if \(g \in N_a \), then \(g^{-1} \in N_a \).

(i) \(N_a \) is closed under multiplication: Suppose \(g, g' \in N_a \). Then

\[(gg')a = g(g'a) = g(aga') = (ga)g' = (ag)g' = a(gg') \]

and so \(gg' \in N_a \).

(ii) Clearly, \(ea = a = ae \) and so \(e \in N_a \).

(iii) Suppose \(g \in N_a \). Then

\[ga = ag \]

Multiplying this equation from the left by \(g^{-1} \) yields

\[a = g^{-1}ga = g^{-1}ag \]

Multiplying the extreme sides of the above equation from the right by \(g^{-1} \) yields

\[ag^{-1} = g^{-1}ag^{-1} = g^{-1}ae = g^{-1}a \implies ag^{-1} = g^{-1}a \implies g^{-1} \in N_a \]

And so if \(g \in N_a \), \(g^{-1} \in N_a \).

EXAMPLE 25.6. Prove that \(H \) is a subgroup of a group \(G \) if and only if \(ab^{-1} \in H \) for all \(a, b \in H \).

\[\Leftarrow \]

Suppose \(ab^{-1} \in H \) for all \(a, b \) in \(H \). We need to show the criteria (i), (ii), (iii) of the previous hold.

Choosing \(b = a \in H \), we have \(aa^{-1} \in H \). But \(aa^{-1} = e \) and so \(e \in H \). This proves (ii).

Now choosing \(a = e \) (which we now know belongs to \(H \)) we have \(eb^{-1} = b^{-1} \in H \) for all \(b \in H \). And so we have property (iii).

It remains to prove that \(ab \in H \) whenever \(a, b \in H \). But by (iii) just proven, if \(b \in H \), then \(b^{-1} \in H \) and so

\[a(b^{-1})^{-1} \in H \implies ab \in H \]
Assume H is a subgroup of G. Then if a, b are in H, so are a^{-1} and b^{-1} since subgroups are closed under multiplicative inverses. But then

$$ab^{-1} \in H$$

since subgroups are closed under multiplication.