Hints to Homework Set 2
(Homework Problems from Chapter 1)

Problems from Section 1.1.
1.1.1. Let \(n \) be an integer. Prove that \(a \) and \(c \) leave the same remainder when divided by \(n \) if and only if \(a - c = nk \) for some \(k \in \mathbb{Z} \).

- \(\implies \) Apply Division Algorithm to \(a \) and \(c \)

\[
\begin{align*}
a &= q_1n + r_1 \\
c &= q_2n + r_2
\end{align*}
\]

and subtract.

- \(\iff \) Suppose \(a - c = nk \). The Division algorithm says we can find integers \(q_1, r_1, q_2, r_2 \) such that

\[
\begin{align*}
a &= q_1n + r_1 \quad \text{with } 0 \leq r_1 < n \\
c &= q_2n + r_2 \quad \text{with } 0 \leq r_2 < n
\end{align*}
\]

We thus have

\[
 nk = a - c = q_1n + r_1 - (q_2n + r_2) = n(q_1 - q_2) + r_1 - r_2
\]

or

\[
 r_1 - r_2 = (k - q_1 - q_2)n
\]

Thus, \(n \mid (r_1 - r_2) \). Now note that \(0 \leq |r_1 - r_2| < n \) (this follows from \(0 \leq r_1 < n \) and \(0 \leq r_2 < n \)). But the only non-negative integer smaller than \(n \) that is divisible by \(n \) is 0. So we must have

\[
 r_1 - r_2 = 0 \implies r_1 = r_2.
\]

1.1.2. Let \(a \) and \(c \) be integers with \(c \neq 0 \). Then there exist unique integers \(q \) and \(r \) such that

- \(a = cq + r \)
- \(0 \leq r < |c| \).

- If \(c > 0 \), then this is just the Division Algorithm theorem. If \(c < 0 \), then the Division Algorithm theorem can be applied to \(-c = |c| \).

\[
\exists ! \ q, r \in \mathbb{Z} \ s.t. \ a = |c|q + r \quad \text{with } 0 \leq r < |c|
\]

Now write

\[
a = (-c)(-q) + r
\]

1.1.3. Prove that the square of any integer \(a \) is either of the form \(3k \) or of the form \(3k + 1 \) for some integer \(k \).

- There possibilities for \(n \) can be split into three subcases.

\[
\begin{align*}
n &= 3q \\
n &= 3q + 1 \\
n &= 3q + 2
\end{align*}
\]

- Examine the form of \(n^2 \) in each of these cases.

1.1.4. Prove that the cube of any integer has exactly one of the forms \(9k \), \(9k + 1 \), or \(9k + 8 \).

- Use the same technique as the preceding problem.

Problems from Section 1.2
1.2.1. (a) Prove that if \(a \mid b \) and \(a \mid c \) then \(a \mid (b + c) \).

- Simply write \(b = as \) and \(c = at \) and consider the sum \(b + c = as + at \)

(b) Prove that if \(a \mid b \) and \(a \mid c \), then \(a \mid (br + ct) \) for any \(r, t \in \mathbb{Z} \).
• Use same technique as above

1.2.2. Prove or disprove that if $a \mid (b + c)$, then $a \mid b$ or $a \mid c$.

• Find a counter-example

1.2.3. Prove that if $r \in \mathbb{Z}$ is a non-zero solution of $x^2 + ax + b = 0$ (where $a, b \in \mathbb{Z}$), then $r \mid b$.

• Just note that if r satisfies $x^2 + ax + b = 0$, then $b = -r^2 - ar$

1.2.4. Prove that $GCD(a, a + b) = d$ if and only if $GCD(a, b) = d$.

• Show that the sets

\[
S = \{\text{common divisors of } a \text{ and } a + b \} \\
T = \{\text{common divisors of } a \text{ and } b \}
\]

coincide.

1.2.5. Prove that if $GCD(a, c) = 1$ and $GCD(b, c) = 1$, then $GCD(ab, c) = 1$.

• Use the Theorem stating $GCD(a, c) = ua + vc$ for some $u, v \in \mathbb{Z}$ to conclude that there exists $u, v \in \mathbb{Z}$ such that

\[
1 = ua + vc \\ b = bua + bvc = (ba) a + (bv) c
\]

and so anything that divides both (ba) and c will divide b. So the greatest common divisor of ba and c must be less than or equal to the greatest common divisor of b and c.

1.2.6. (a) Prove that if $a, b, u, v \in \mathbb{Z}$ are such that $au + bv = 1$, then $GCD(a, b) = 1$.

Suppose a, b have a common divisor $t > 1$. Then

\[
1 = au + bv = (xt) u + (yt) v = t(xu + yv)
\]

But then $t\mid 1$ and $|t| > 1 \Rightarrow \text{contradiction!}$

(b) Show by example that if $au + bv = d > 0$, then $GCD(a, b)$ need not be d.

Problems from Section 1.3

1.3.1. Let p be an integer other than $0, \pm 1$. Prove that p is prime if and only if for each $a \in \mathbb{Z}$, either $GCD(a, p) = 1$ or $p \mid a$.

• \Rightarrow If p is prime then since its only divisors are $\{-1, -|p|, +1, |p|\}$ its greatest common divisor with any number must be either 1 or $|p|$. So either $GCD(a, p) = 1$, or $GCD(a, p) = |p|$. In the latter case, $|p|$ is a divisor of a, hence so is p.

• \Leftarrow Suppose $p \neq 0, \pm 1$ has the property that for any $a \in \mathbb{Z}$ either $GCD(a, p) = 1$ or $p|a$. Suppose p has a non-trivial factorization $p = rs$, $1 < |r| |s| < |p|$

Then since $r \in \mathbb{Z}$, either $1 = GCD(r, p) = r$ or $p|r$ which requires $|p| \leq |r|$.

1.3.2 Let p be an integer other than $0, \pm 1$ with this property: Whenever b and c are integers such that $p \mid bc$, then $p \mid c$ or $p \mid b$. Prove that p is prime.

• Suppose p has a non-trivial factorization $p = rs$ and note the contradiction that arises since $p|p \Rightarrow p|rs$ (which will be similar to the second part of Problem 1.3.1).
1.3.3. Prove that if every integer integer $n > 1$ can be written in one and only one way in the form

$$n = p_1 p_2 \cdots p_r$$

where the p_i are positive primes such that $p_1 \leq p_2 \leq \cdots \leq p_r$.

1.3.4. Prove that if p is prime and $p \mid a^n$, then $p^n \mid a^n$.

1.3.5.
(a) Prove that there exist no nonzero integers a, b such that $a^2 = 2b^2$.

- Show that the two sides of $a^2 = 2b^2$ can not have the same number of prime factors, and so they can’t be equal.

(b) Prove that $\sqrt{2}$ is irrational.

- If

$$\sqrt{2} = \frac{a}{b}, \quad a, b \in \mathbb{Z}$$

then

$$a^2 = 2b^2$$

and apply Part (a) to furnish a contradiction.