
LECTURE 14

Diagonalization of Matrices

Recall that a diagonal matrix is a square n×n matrix with non-zero entries only along the diagonal from
the upper left to the lower right (the main diagonal).

Diagonal matrices are particularly convenient for eigenvalue problems since the eigenvalues of a diagonal
matrix

A =


a11 0 · · · 0

0 a22
...

... · · ·
. . . 0

0 · · · 0 ann


coincide with the diagonal entries {aii} and the eigenvector corresponding the eigenvalue aii is just the ith

coordinate vector.

Example 14.1. Find the eigenvalues and eigenvectors of

A =

[
2 0
0 3

]
• The characteristic polynomial is

PA (λ) = det (A− λI) = det

[
2− λ 0

0 3− λ

]
= (2− λ) (3− λ)

Evidently PA(λ) has roots at λ = 2, 3. The eigenvectors corresponding to the eigenvalue λ = 2
are solutions of

(A− (2)I)x = 0 ⇒
[

0 0
0 1

] [
x1
x2

]
=

[
0
0

]
⇒ x2 = 0

⇒ x ∈ span
([

1
0

])
The eigenvectors corresponding to the eigenvalue λ = 3 are solutions of

(A− (3)I)x = 0 ⇒
[
−1 0
0 0

] [
x1
x2

]
=

[
0
0

]
⇒ −x1 = 0

⇒ x ∈ span
([

0
1

])
This property (that the eigenvalues of a diagonal matrix coincide with its diagonal entries and the eigenvec-
tors corresponds to the corresponding coordinate vectors) is so useful and important that in practice one
often tries to make a change of coordinates just so that this will happen. Unfortunately, this is not always
possible; however, if it is possible to make a change of coordinates so that a matrix becomes diagonal we
say that the matrix is diagonalizable. More formally,

Lemma 14.2. Let A be a real (or complex) n× n matrix, let λ1, λ2, . . . , λn be a set of n real (respectively,
complex) scalars, and let v1,v2, . . . ,vn be a set of n vectors in Rn (respectively, Cn ). Let C be the n× n
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matrix formed by using vj for jth column vector, and let D be the n × n diagonal matrix whose diagonal
entries are λ1, λ2, . . . , λn . Then

AC = CD

if and only if λ1, λ2, . . . , λn are the eigenvalues of A and each vj is an eigenvector of A correponding the
eigenvalue λj .

Proof. Under the hypotheses

AC = A

 | · · · |
v1 · · · vn
| · · · |

 =

 | · · · |
Av1 · · · Avn
| · · · |


CD =

 | · · · |
v1 · · · vn
| · · · |


 λ1 · · · 0

...
. . .

...
0 · · · λn

 =

 | · · · |
λ1v1 · · · λnvn
| · · · |


and so AC = CD implies

Av1 = λ1v1

...

Avn = λnvn

and vice-versa. �

Now suppose AC = CD, and the matrix C is invertible. Then we can write

D = C−1AC.

And so we can think of the matrix C as converting A into a diagonal matrix.

Definition 14.3. An n× n matrix A is diagonalizable if there is an invertible n× n matrix C such that
C−1AC is a diagonal matrix. The matrix C is said to diagonalize A.

Theorem 14.4. An n×n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Proof. The argument here is very simple. Suppose A has n linearly independent eigenvectors. Then the
matrix C formed by using these eigenvectors as column vectors will be invertible (since the rank of C will
be equal to n). On the other hand, if A is diagonalizable then, by definition, there must be an invertible
matrix C such that D = C−1AC is diagonal. But then the preceding lemma says that the column vectors
of C must coincide with the eigenvectors of A. Since C is invertible, these n column vectors must be linearly
independent. Hence, A has n linearly independent eigenvectors. �

Example 14.5. Find the matrix that diagonalizes

A =

[
2 6
0 −1

]
• First we’ll find the eigenvalues and eigenvectors of A.

0 = det (A− λI) = det

[
2− λ 6

0 −1− λ

]
= (2− λ)(−1− λ) ⇒ λ = 2,−1

The eigenvectors corresponding to the eigenvalue λ = 2 are solutions of (A− (2)I)x = 0 or[
0 6
0 −3

] [
x1
x2

]
=

[
0
0

]
⇒ 6x2 = 0

−3x2 = 0
⇒ x2 = 0 ⇒ x = r

[
1
0

]
The eigenvectors corresponding to the eigenvalue λ = −1 are solutions of (A− (−1)I)x = 0 or[
3 6
0 0

] [
x1
x2

]
=

[
0
0

]
⇒ 3x1 + 6x2 = 0

0 = 0
⇒ x1 = −2x2 ⇒ x = r

[
−2
1

]
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So the vectors v1 = [1, 0] and v2 = [−2, 1] will be eigenvectors of A. We now arrange these two
vectors as the column vectors of the matrix C.

C =

[
1 −2
0 1

]
In order to compute the diagonalization of A we also need C−1. This we compute using the
technique of Section 1.5:[

1 −2
0 1

∣∣∣∣ 1 0
0 1

]
R1 → R1 + 2R2−−−−−−−−−−−→

[
1 0
0 1

∣∣∣∣ 1 2
0 1

]
⇒ C−1 =

[
1 2
0 1

]
Finally,

D = C−1AC = C−1 (AC)

=

[
1 2
0 1

]([
2 6
0 −1

] [
1 −2
0 1

])
=

[
1 2
0 1

] [
2 2
0 −1

]
=

[
2 0
0 −1

]

1. Criteria for Diagonalizability

Example 14.6. Recall that in the preceding lecture we found the eigenvalues and eigenvectors for

A =

 0 0 1
−2 1 1
2 0 −1


What we found were, two possible eigenvalues and two corresponding eigenvectors (actually two possible
eigenspaces).

λ = −2 ⇒ v1 =

[
−2,−2

3
, 1

]
λ = 1 ⇒ v2 = [0, 1, 0]

In order to diagonalize A we need to construct an invertible 3 × 3 matrix C using the eigenvectors of A
as the columns. However, we have only two linearly independent eigenvectors - so this construction is not
going to work. In fact, A is not diagonalizable.

So an n× n matrix need not be diagonalizable. Nevertheless,

Theorem 14.7. Suppose the characteristic equation det (A− λI) = 0 for an n×n matrix A has n distinct
roots. Then A is diagonalizable.

Theorem 14.8. Suppose A is a symmetric n× n matrix. Then each root of the characteristic equation for
A is real and moreover A is diagonalizable.

2. Applications

2.1. Principal Axes of Inertia. Consider a rigid body B whose center of mass lies at the origin
0 ∈ R3 and which is rotating with constant angular velocity ω. (The magitude of ω ∈ R3 is the speed of
the rotation in radians/sec and the direction of ω corresponds to the axes of rotation, oriented according
to the right hand rule.) The rotational kinetic energy for such a system is given by

Trot =

3∑
i=1

3∑
j=1

Iijωiωj
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where the Iij are the components of the inertia tensor:

Iij =

∫
B

ρ (x)
[
δij ‖x‖2 − xixj

]
dx

(here δij = 1 if i = j and δij = 0 if i 6= j). The angular momentum L of the body is given

Li =

3∑
j=1

Iijωj

Interpreting the inertia tensor as a 3× 3 matrix, and L and ω as vectors in R3, we can write

L = Iω

where the multiplication on the right is just the multiplication of a vector in R3 by a 3× 3 matrix.

Question 14.9. When is L parallel to ω?

A physical motivation for this question is as follows. Rotational motions can in general be rather compli-
cated. For a body can be simultaneously spinning about one axes and tumbling about another axis (indeed,
in gymnastics one often sees sommersaults combined with twists). And all of these motions will contribute
to the total angular momentum. However, if the angular momentum is parallel to the angular velocity,
the motion will be particularly simple; and mathematically this will happen whenever

Iω = L = λω

i.e., whenever ω is an eigenvector of I. The correponding directions are referred to as principal axes of
inertia.

Example 14.10. Find the principle axes for a body whose inertia tensor is given by

A =

 2 2 0
2 5 0
0 0 3


, eigenvalues: 3, 1, 6

• First we find the eigenvalues of A:

0 = det (A− λI) = (2− λ) (5− λ) (3− λ)− (2) (2) (3)

= −λ3 + 10λ2 − 31λ+ 18

= − (λ− 1) (λ− 3) (λ− 6)

λ = 1, 3, 6

• Next we find the eigenvectors:
λ = 1 :

A− (1) I =

 1 2 0
2 4 0
0 0 2

 → R.R.E.F. (A− I) =

 1 2 0
0 0 1
0 0 0


⇒

x1 + 2x2 = 0
x3 = 0
0 = 0

 ⇒ vλ=1 =

 −2
1
0


λ = 3

A− (3) I =

 −1 2 0
2 2 0
0 0 0

 → R.R.E.F. (A− 3I) =

 1 0 0
0 1 0
0 0


⇒

x1 = 0
x2 = 0
0 = 0

 ⇒ vλ=3 =

 0
0
1


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λ = 6

A− (6) I =

 −4 2 0
2 −1 0
0 0 −3

 → R.R.E.F. (A− I) =

 1 − 1
2 0

0 0 1
0 0 0


⇒

x1 − 1
2x2 = 0

x3 = 0
0 = 0

 ⇒ vλ=6 =

 1
2
1
0


• Each eigenvector vλ of A corresponds to a principle axis of inertia, and the corresponding eigen-

value is the corresponding moment of inertia about that axis: Thus

principle axis moment of inertia
[−2, 1, 0] 1
[0, 0, 1] 3[
1
2 , 1, 0

]
6

Notice that
vλi · vλj = 0 if i 6= j

so these three principle axes are perpendicular to each other. To see that this is always the case,
suppose λ 6= λ′ and consider the triple product

vTλAvλ′

Now we can evaluate this expression two ways: First of all

vTλAvλ′ = vTλ (Avλ′) = vTλ
(
λ′vλ′

)
= λ′ (vλ · vλ′)

Alternatively, since A = AT , we have

vTλA =
(
ATvλ

)T
= (Avλ)

T
= (λvλ)

T

and so
vTλAvλ′ = λ (vλ · vλ′)

But then we have
λ (vλ · vλ′) = vTλAvλ′ = λ′ (vλ · vλ′)

or (
λ− λ′

)
(vλ · vλ′) = 0

Since, by hypothesis λ 6= λ′, we must have vλ · vλ′ = 0

2.2. Systems of ODEs. Our study of eigenvalues/eigenvectors and diagonalization has another very
useful application to the solution of systems of ordinary differential equations. In what follows below, we’ll
consider a system of two ordinary differential equations in two unknown functions; but it should be easy to
see how to generalize this techniques to systems of n differential equations in n unknown functions.

Consider the following general system of first order ODEs:

dx1
dt

(t) = a11x1 (t) + a12x2 (t)

dx2
dt

(t) = a21x1 (t) + a22x2 (t)

Such systems occur in a number of disparate contexts

• Chemistry. The rate at which the concentration of a reactant changes is proportional to its
concentration and the concentration of another reactant.

• Biology. The rate at which a predator and prey populations changes is related to the populations
of predators and prey.

• Physics. Coupled oscillators
• Electrical Engineering. Simple passive element circuits
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If we have such a system, we can reformulate it as a matrix differential equation. To do this, we set

x (t) =

[
x1 (t)
x2 (t)

]
, A =

[
a11 a12
a21 a22

]
so that we can write the system as matrix equation.

(1)
d

dt
x (t) = Ax (t)

A particularly easy case is when A is diagonal.

(2) A =

(
λ1 0
0 λ2

)
In this case, we say that the system is decoupled ; because the differentiaion equations for such a system are
of the form

dx1
dt

= λ1x1 + 0

dx2
dt

= 0 + λ2x2

Such equations are easily solved, one-at-a-time,

x1 (t) = c1e
λ1t(14.1)

x2 (t) = c2e
λ2t(14.2)

It is the general (non-diagonal) case that we want to solve. This will do by using the diagonalization
process to convert the problem to the easier solvable case of diagonal matrices.

Thus, suppose we have found the eigenvalues λ1, λ2 and eigenvectors v1,v2 of the coefficient matrix A, as
well as the matrices C and D such that

C =

 ↑ ↑
v1 v2

↓ ↓

 , D =

(
λ1 0
0 λ2

)

with

D = C−1AC ⇐⇒ A = CDC−1

Now consider the related system

(4)

(
dy1
dt
dy2
dt

)
=

d

dt
y (t) = Dy (t) =

(
λ1 0
0 λ2

)(
y1 (t)
y2 (t)

)
=

(
λ1y1
λ2y2

)
This is a decoupled system and we have as its general solution

(5) y (t) =

(
c1e

λ1t

c2e
λ2t

)

Now consider

(6) x (t) = Cy (t)
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This vector function will satisfy

d

dt
x (t) =

d

dt
(Cy (t))

= C
d

dt
y (t) since C is a constant matrix

= C (Dy (t))

= CDC−1Cy (t)

=
(
CDC−1

)
(Cy (t))

= Ax (t)

That is to say,

(7) x (t) = C

(
c1e

λ1t

c2e
λ2t

)
will satisy the original system of coupled ODEs (in fact, it will be the general solution).

In summary (and in more generality). one can solve a system of coupled ODEs

dx1
dt

= a11x1 (t) + · · ·+ a1nxn (t)

...
dxn
dt

= an1x1 (t) + · · ·+ annxn (t)

by carrying out the following steps:

• Form the coefficient matrix

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann


• Find the eigenvalues λ1, . . . , λn and eigenvectors v1, . . . ,vn of A, and use them to form the diagonal

matrix D and the diagonalizing matrix C

D =

 λ1 0
. . .

0 λn

 , C =

 ↑ ↑
v1 · · · vn
↓ ↓


• Solve the decoupled system (easy)

dy

dt
= Dy (t) ⇒ y (t) =

 c1e
λ1t

...
cne

λnt


• Transform the decoupled solutions back to solutions x (t) of the original system

x (t) = Cy (t)


