1. (Problems 5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5 in text) Find the eigenvalues \(\lambda_i \), the corresponding eigenvectors \(v_i \) of the following matrices. Also find an invertible matrix \(C \) and a diagonal matrix \(D \) such that \(D = C^{-1}AC \).

(a) \(A = \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix} \)

- First, we calculate the eigenvalues and eigenvectors of \(A \).

\[
0 = \det (A - \lambda I) = \begin{vmatrix} -3 - \lambda & 4 \\ 4 & 3 - \lambda \end{vmatrix} = \lambda^2 - 25 = (\lambda - 5)(\lambda + 5) \Rightarrow \lambda = 5, -5
\]

The eigenspace corresponding to the eigenvalue \(\lambda_1 = 5 \) is the null space of

\[
A - (5)I = \begin{bmatrix} -8 & 4 \\ 4 & -2 \end{bmatrix} \iff \begin{bmatrix} 2 \\ 0 \end{bmatrix}
\]

or, equivalently, the solution space of

\[
2x_1 - x_2 = 0 \quad \Rightarrow \quad x = \begin{bmatrix} 2x_2 \\ x_2 \end{bmatrix} \in \text{span} \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix} \right)
\]

So the eigenspace corresponding to the eigenvalue \(\lambda_1 = 5 \) is the subspace generated by the vector

\[
v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
\]

The eigenspace corresponding to the eigenvalue \(\lambda_2 = -5 \) is the null space of

\[
A - (-5)I = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix} \iff \begin{bmatrix} 1 \\ 2 \end{bmatrix}
\]

or, equivalently, the solution space of

\[
x_1 + 2x_2 = 0 \quad \Rightarrow \quad x = \begin{bmatrix} -\frac{1}{2}x_2 \\ x_2 \end{bmatrix} \in \text{span} \left(\begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \right) = \text{span} \left(\begin{bmatrix} 1 \\ -2 \end{bmatrix} \right)
\]

So the eigenspace corresponding to the eigenvalue \(\lambda_2 = -5 \) is the subspace generated by the vector

\[
v_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}
\]

Now that we know the eigenvalues and eigenvectors of \(A \), we can write down the diagonal matrix \(D \) by arranging the eigenvalues of \(A \) along the main diagonal of \(D \)

\[
D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix}
\]

The matrix \(C \) can be written down by arranging the eigenvectors of \(A \) (in order) as the column vectors of a \(2 \times 2 \) matrix:

\[
C = [v_1 | v_2] = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}
\]

One can easily verify that

\[
C^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & -\frac{2}{5} \end{bmatrix}
\]

and that \(D = C^{-1}AC \) (however, this fact is already guaranteed by the way we constructed the matrices \(D \) and \(C \)).
(b) \(A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}\)

- First, we calculate the eigenvalues and eigenvectors of \(A\).

\[
0 = \det (A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 \\ 1 & 4 - \lambda \end{vmatrix} = \lambda^2 - 7\lambda + 10 = (\lambda - 2)(\lambda - 5) \quad \Rightarrow \quad \lambda = 2, 5
\]

The eigenspace corresponding to the eigenvalue \(\lambda_1 = 2\) is the null space of

\[
A - (2)I = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}
\]

or, equivalently, the solution space of

\[
x_1 + 2x_2 = 0 \quad \Rightarrow \quad x = \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} \in \text{span} \left(\begin{bmatrix} -2 \\ 1 \end{bmatrix} \right)
\]

So the eigenspace corresponding to the eigenvalue \(\lambda_1 = 2\) is the subspace generated by the vector \(v_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}\)

The eigenspace corresponding to the eigenvalue \(\lambda_2 = 5\) is the null space of

\[
A - (5)I = \begin{bmatrix} -2 & 2 \\ 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}
\]

or, equivalently, the solution space of

\[
x_1 - x_2 = 0 \quad \Rightarrow \quad x = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} \in \text{span} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)
\]

So the eigenspace corresponding to the eigenvalue \(\lambda_2 = 5\) is the subspace generated by the vector \(v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\)

Now that we know the eigenvalues and eigenvectors of \(A\), we can write down the diagonal matrix \(D\) by arranging the eigenvalues of \(A\) along the main diagonal of \(D\)

\[
D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}
\]

The matrix \(C\) can be written down by arranging the eigenvectors of \(A\) (in order) as the column vectors of a \(2 \times 2\) matrix:

\[
C = [v_1 \mid v_2] = \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}
\]

(c) \(A = \begin{bmatrix} 7 & 8 \\ -4 & -5 \end{bmatrix}\)

- First, we calculate the eigenvalues and eigenvectors of \(A\).

\[
0 = \det (A - \lambda I) = \begin{vmatrix} 7 - \lambda & 8 \\ -4 & -5 - \lambda \end{vmatrix} = \lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1) \quad \Rightarrow \quad \lambda = 3, -1
\]

The eigenspace corresponding to the eigenvalue \(\lambda_1 = 3\) is the null space of

\[
A - (3)I = \begin{bmatrix} 4 & 8 \\ -4 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}
\]

or, equivalently, the solution space of

\[
x_1 + 2x_2 = 0 \quad \Rightarrow \quad x = \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} \in \text{span} \left(\begin{bmatrix} -2 \\ 1 \end{bmatrix} \right)
\]
So the eigenspace corresponding to the eigenvalue $\lambda_1 = 3$ is the subspace generated by the vector

$$v_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

The eigenspace corresponding to the eigenvalue $\lambda_2 = -1$ is the null space of

$$A - (-1)I = \begin{bmatrix} 8 & 8 \\ -4 & -4 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

or, equivalently, the solution space of

$$x_1 + x_2 = 0$$
$$0 = 0$$

$$\Rightarrow x = \begin{bmatrix} -x_2 \\ x_2 \end{bmatrix} \in \text{span}\left(\begin{bmatrix} -1 \\ 1 \end{bmatrix}\right)$$

So the eigenspace corresponding to the eigenvalue $\lambda_2 = -1$ is the subspace generated by the vector

$$v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Now that we know the eigenvalues and eigenvectors of A, we can write down the diagonal matrix D by arranging the eigenvalues of A along the main diagonal of D

$$D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$

The matrix C can be written down by arranging the eigenvectors of A (in order) as the column vectors of a 2×2 matrix:

$$C = [v_1 | v_2] = \begin{bmatrix} -2 & -1 \\ 1 & 1 \end{bmatrix}$$

(d) $A = \begin{bmatrix} 6 & 3 & -3 \\ -2 & -1 & 2 \\ 16 & 8 & -7 \end{bmatrix}$

- The characteristic polynomial of A is

$$P_A(\lambda) = \begin{vmatrix} 6 - \lambda & 3 & -3 \\ -2 & -1 - \lambda & 2 \\ 16 & 8 & -7 - \lambda \end{vmatrix} = 3\lambda - 2\lambda^2 - \lambda^3 = -\lambda(\lambda + 3)(\lambda - 1)$$

So A has three distinct real eigenvalues: $\lambda_1 = 0$, $\lambda_2 = -3$ and $\lambda_3 = 1$.

The eigenspace corresponding to the first eigenvector $\lambda_1 = 0$ is the null space of

$$A - (0)I = \begin{bmatrix} 6 & 3 & -3 \\ -2 & -1 & 2 \\ 16 & 8 & -7 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 2 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

is the solution set of

$$2x_1 + x_2 - x_3 = 0$$
$$x_3 = 0$$
$$0 = 0$$

$$\Rightarrow x_2 \text{ is unfixed}$$
$$x_3 = 0$$

So the corresponding eigenvectors are

$$v_1 \in \text{span}\left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\right)$$

The eigenspace corresponding to the eigenvector $\lambda_2 = -3$ is the null space of

$$A - (2)I = \begin{bmatrix} 9 & 3 & -3 \\ -2 & 2 & 2 \\ 16 & 8 & -4 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 3 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
is the solution set of
\[\begin{align*}
3x_1 + x_2 - x_3 &= 0 \\
2x_2 + x_3 &= 0 \\
0 &= 0
\end{align*}\]

\[\Rightarrow \begin{align*}
x_1 &= \frac{1}{2}x_3 \\
x_2 &= -\frac{1}{2}x_3 \\
x_3 &\text{ is unfixed}
\end{align*}\]

So the corresponding eigenvectors are

\[v_2 \in \text{span} \left(\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix} \right) \]

The eigenspace corresponding to the first eigenvector \(\lambda_1 = 1\) is the null space of

\[A - (1)I = \begin{bmatrix} 5 & 3 & -3 \\ -2 & -2 & 2 \\ 16 & 8 & -8 \end{bmatrix} \leftrightarrow \begin{bmatrix} 0 & 0 & 0 \\ 5 & 3 & -3 \\ 0 & 1 & -1 \end{bmatrix}\]

is the solution set of
\[\begin{align*}
5x_1 + 3x_2 - 3x_3 &= 0 \\
x_2 - x_3 &= 0 \\
0 &= 0
\end{align*}\]

\[\Rightarrow \begin{align*}
x_1 &= 0 \\
x_2 &= x_3 \\
x_3 &\text{ is unfixed}
\end{align*}\]

So the corresponding eigenvectors are

\[v_3 \in \text{span} \left(\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) \]

From the eigenvalues of \(A\) we can now form the diagonal matrix \(D\):

\[D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}\]

And from the corresponding eigenvectors we can form the invertible matrix \(C\)

\[C = [v_1 | v_2 | v_3] = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 1 & -\frac{1}{2} & 1 \\ 0 & 1 & 1 \end{bmatrix}\]

such that \(D = C^{-1}AC\).

(e) \(A = \begin{bmatrix} -3 & 10 & -6 \\ 0 & 7 & -6 \\ 0 & 0 & 1 \end{bmatrix}\)

- The characteristic polynomial of \(A\) is

\[P_A(\lambda) = \begin{vmatrix} -3 - \lambda & 10 & -6 \\ 0 & 7 - \lambda & -6 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = -(\lambda + 3)(\lambda - 7)(\lambda - 1)\]

So \(A\) has three distinct real eigenvalues: \(\lambda_1 = -3\), \(\lambda_2 = 7\) and \(\lambda_3 = 1\).

The eigenspace corresponding to the first eigenvector \(\lambda_1 = 0\) is the null space of

\[A - (-3)I = \begin{bmatrix} 0 & 10 & -6 \\ 10 & 0 & -6 \\ 0 & 0 & 4 \end{bmatrix} \leftrightarrow \begin{bmatrix} 0 & 5 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}\]

is the solution set of
\[\begin{align*}
5x_2 - 3x_3 &= 0 \\
x_3 &= 0 \\
0 &= 0
\end{align*}\]

\[x_1 \text{ is unfixed} \]
\[x_2 = 0 \]
\[x_3 = 0 \]
So the corresponding eigenvectors are

\[v_1 \in \text{span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) \]

The eigenspace corresponding to the eigenvector \(\lambda_2 = 7 \) is the null space of

\[A - (7)I = \begin{bmatrix} -10 & 10 & -6 \\ 0 & 0 & -6 \\ 0 & 0 & -6 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \]

is the solution set of

\[
\begin{align*}
\begin{align*}
x_1 - x_2 &= 0 \\
x_3 &= 0 \\
0 &= 0
\end{align*}
\begin{align*}
x_1 &= x_2 \\
x_2 &= x_3 = 0
\end{align*}
\Rightarrow
\begin{align*}
x_2 \text{ is unfixed}
\end{align*}
\]

So the corresponding eigenvectors are

\[v_2 \in \text{span} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right) \]

The eigenspace corresponding to the first eigenvector \(\lambda_3 = 1 \) is the null space of

\[A - (1)I = \begin{bmatrix} -4 & 10 & -6 \\ 0 & 6 & -6 \\ 0 & 0 & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \]

is the solution set of

\[
\begin{align*}
\begin{align*}
x_1 - x_3 &= 0 \\
x_2 - x_3 &= 0 \\
0 &= 0
\end{align*}
\begin{align*}
x_1 &= x_3 \\
x_2 &= x_3 = 0
\end{align*}
\Rightarrow
\begin{align*}
x_2 \text{ is unfixed}
\end{align*}
\]

So the corresponding eigenvectors are

\[v_3 \in \text{span} \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right) \]

From the eigenvalues of \(A \) we can now form the diagonal matrix \(D \):

\[D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

And from the corresponding eigenvectors we can form the invertible matrix \(C \)

\[C = [v_1 \mid v_2 \mid v_3] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \]

such that \(D = C^{-1}AC \).

2. (Problems 5.2.9 and 5.2.10 in text) Determine whether or not the following matrices are diagonalizable.

(a) \(A = \begin{bmatrix} 1 & 2 & 6 \\ 2 & 0 & -4 \\ 6 & -4 & 3 \end{bmatrix} \)

- Yes, because the matrix is real and symmetric. (See Theorem 5.5 in the text.)

(b) \(A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} \)
Let us calculate the characteristic polynomial of A:

$$P_A(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 & 0 \\ 0 & 3 - \lambda & 1 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^3$$

We thus have only one eigenvalue, $\lambda = 3$. The corresponding eigenspace is the null space of

$$A - (3)I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

or, equivalently, the solution space of

$$\begin{align*}
x_2 &= 0 \\
x_3 &= 0 \\
x &= \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} \in \text{span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right)
\end{align*}$$

So the eigenspace is just 1-dimensional. But we need three linearly independent eigenvectors to construct the matrix C that diagonalizes A. Hence, A is not diagonalizable.

3. (Problem 5.2.13 in text) Mark each of the following True or False.

(a) Every $n \times n$ matrix is diagonalizable.

- False. (An $n \times n$ matrix A needs n linearly independent eigenvectors in order to be diagonalizable.)

(b) If an $n \times n$ matrix has n distinct real eigenvalues, then it is diagonalizable.

- True. (See Theorem 5.3 in text.)

(c) Every $n \times n$ real symmetric matrix is real diagonalizable.

- True. (See Theorem 5.5 in text.)

(d) An $n \times n$ matrix is diagonalizable if and only if it has n real eigenvalues.

- False. (If it has n distinct real eigenvalues then it is diagonalizable, however it is not absolutely necessary that all the eigenvalues are distinct.)

(e) An $n \times n$ matrix is diagonalizable if and only if the algebraic multiplicity of each of its eigenvalues equals the geometric multiplicity.

- True. (See Theorem 5.4 in text.)

(f) Every invertible matrix is diagonalizable.

- False. (Consider

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This matrix is invertible since $\det(A) = 1 \neq 0$. However, $\det(A - \lambda I) = (1 - \lambda)^3$ so there is only one eigenvalue. The corresponding eigenspace is the solution space of $(A - I)x = 0$ which is generated by two vectors $[1, 0, 0]$ and $[0, 1, 0]$. However, we need three independent eigenvectors in order to diagonalize A. Hence, A is invertible but not diagonalizable.)
(g) Every triangular matrix is diagonalizable.

- False. (See answer to Part (f).)

(h) If A and B are similar matrices and A is diagonalizable, then B is also diagonalizable.

- True.

(i) If an $n \times n$ matrix A is diagonalizable, there is a unique diagonal matrix D that is similar to A.

- False. (Suppose $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A and v_1, \ldots, v_n are the corresponding set of linearly independent eigenvectors. Then arranging the λ_i along the diagonal of an $n \times n$ matrix we obtain a diagonalization D of A. However, if we simply changing the ordering of the eigenvalues, then the same procedure produces a different diagonalization of A.)

(j) If A and B are similar square matrices then $\det(A) = \det(B)$.

- True. (If A and B are similar, then, by definition, there is an invertible matrix C such that $B = C^{-1}AC$. But then $\det(B) = \det(C^{-1}AC) = \det(C^{-1})\det(A)\det(C) = \det(A)$; since $\det(C^{-1}) = 1/\det(C)$.)