Diagonalization of Matrices

Recall that a diagonal matrix is a square $n \times n$ matrix with non-zero entries only along the diagonal from the under left to the lower right (the main diagonal).

Diagonal matrices are particularly convenient for eigenvalue problems since the eigenvalues of a diagonal matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & & \vdots \\
\vdots & \cdots & \ddots & 0 \\
0 & \cdots & 0 & a_{n n}
\end{array}\right]
$$

coincide with the diagonal entries $\left\{a_{i i}\right\}$ and the eigenvector corresponding the eigenvalue $a_{i i}$ is just the $i^{\text {th }}$ coordinate vector.

Example 16.1. Find the eigenvalues and eigenvectors of

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

- The characteristic polynomial is

$$
P_{\mathbf{A}}(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 0 \\
0 & 3-\lambda
\end{array}\right]=(2-\lambda)(3-\lambda)
$$

Evidently $P_{\mathbf{A}}(\lambda)$ has roots at $\lambda=2,3$. The eigenvectors corresponding to the eigenvalue $\lambda=2$ are solutions of

$$
\begin{aligned}
(\mathbf{A}-(2) \mathbf{I}) \mathbf{x} & =\mathbf{0} \Rightarrow\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow x_{2}=0 \\
& \Rightarrow \mathbf{x} \in \operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
\end{aligned}
$$

The eigenvectors corresponding to the eigenvalue $\lambda=3$ are solutions of

$$
\begin{aligned}
(\mathbf{A}-(3) \mathbf{I}) \mathbf{x} & =\mathbf{0} \Rightarrow\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow-x_{1}=0 \\
& \Rightarrow \mathbf{x} \in \operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\end{aligned}
$$

This property (that the eigenvalues of a diagonal matrix coincide with its diagonal entries and the eigenvectors corresponds to the corresponding coordinate vectors) is so useful and important that in practice one often tries to make a change of coordinates just so that this will happen. Unfortunately, this is not always possible; however, if it is possible to make a change of coordinates so that a matrix becomes diagonal we say that the matrix is diagonalizable. More formally,

Lemma 16.2. Let A be a real (or complex) $n \times n$ matrix, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be a set of n real (respectively, complex) scalars, and let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a set of n vectors in \mathbb{R}^{n} (respectively, \mathbb{C}^{n}). Let \mathbf{C} be the $n \times n$
matrix formed by using \mathbf{v}_{j} for $j^{\text {th }}$ column vector, and let \mathbf{D} be the $n \times n$ diagonal matrix whose diagonal entries are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Then

$$
\mathrm{AC}=\mathbf{C D}
$$

if and only if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of \mathbf{A} and each \mathbf{v}_{j} is an eigenvector of \mathbf{A} correponding the eigenvalue λ_{j}.

Proof. Under the hypotheses

$$
\begin{aligned}
& \mathbf{A C}=\mathbf{A}\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\
\mid & \cdots & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{A} \mathbf{v}_{1} & \cdots & \mathbf{A} \mathbf{v}_{n} \\
\mid & \cdots & \mid
\end{array}\right] \\
& \mathbf{C D}
\end{aligned}=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\mathbf{v}_{\mathbf{1}} & \cdots & \mathbf{v}_{n} \\
\mid & \cdots & \mid
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]=\left[\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\lambda_{1} \mathbf{v}_{\mathbf{1}} & \cdots & \lambda_{n} \mathbf{v}_{n} \\
\mid & \cdots & \mid
\end{array}\right]\right] .
$$

and so $\mathbf{A C}=\mathbf{C D}$ implies

$$
\begin{aligned}
\mathbf{A} \mathbf{v}_{\mathbf{1}}= & \lambda_{\mathbf{1}} \mathbf{v}_{\mathbf{1}} \\
& \vdots \\
\mathbf{A} \mathbf{v}_{n}= & \lambda_{n} \mathbf{v}_{n}
\end{aligned}
$$

and vice-versa.
Now suppose $\mathbf{A C}=\mathbf{C D}$, and the matrix \mathbf{C} is invertible. Then we can write

$$
\mathrm{D}=\mathrm{C}^{-1} \mathrm{AC}
$$

And so we can think of the matrix \mathbf{C} as converting \mathbf{A} into a diagonal matrix.
Definition 16.3. An $n \times n$ matrix \mathbf{A} is diagonalizable if there is an invertible $n \times n$ matrix \mathbf{C} such that $\mathbf{C}^{-1} \mathrm{AC}$ is a diagonal matrix. The matrix C is said to diagonalize \mathbf{A}.

Theorem 16.4. An $n \times n$ matrix \mathbf{A} is diagonalizable iff and only if it has n linearly independent eigenvectors.

Proof. The argument here is very simple. Suppose A has n linearly independent eigenvectors. Then the matrix \mathbf{C} formed by using these eigenvectors as column vectors will be invertible (since the rank of \mathbf{C} will be equal to n). On the other hand, if \mathbf{A} is diagonalizable then, by definition, there must be an invertible matrix \mathbf{C} such that $\mathbf{D}=\mathbf{C}^{-1} \mathbf{A C}$ is diagonal. But then the preceding lemma says that the columns vectors of \mathbf{C} must coincide with the eigenvectors of \mathbf{A}. Since \mathbf{C} is invertible, these n column vectors must be linearly independent. Hence, A has n linearly independent eigenvectors.

Example 16.5. Find the matrix that diagonalizes

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 6 \\
0 & -1
\end{array}\right]
$$

- First we'll find the eigenvalues and eigenvectors of \mathbf{A}.

$$
0=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 6 \\
0 & -1-\lambda
\end{array}\right]=(2-\lambda)(-1-\lambda) \quad \Rightarrow \quad \lambda=2,-1
$$

The eigenvectors corresponding to the eigenvalue $\lambda=2$ are solutions of $(\mathbf{A}-(2) \mathbf{I}) \mathbf{x}=0$ or

$$
\left[\begin{array}{cc}
0 & 6 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Rightarrow \quad \begin{gathered}
6 x_{2}=0 \\
-3 x_{2}=0
\end{gathered} \quad \Rightarrow \quad x_{2}=0 \quad \Rightarrow \quad \mathbf{x}=r\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The eigenvectors corresponding to the eigenvalue $\lambda=-1$ are solutions of $(\mathbf{A}-(-1) \mathbf{I}) \mathbf{x}=0$ or

$$
\left[\begin{array}{ll}
3 & 6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow \begin{gathered}
3 x_{1}+6 x_{2}=0 \\
0=0
\end{gathered} \quad \Rightarrow \quad x_{\mathbf{1}}=-2 x_{2} \quad \Rightarrow \quad \mathbf{x}=r\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

So the vectors $\mathbf{v}_{\mathbf{1}}=[1,0]$ and $\mathbf{v}_{2}=[-2,1]$ will be eigenvectors of \mathbf{A}. We now arrange these two vectors as the column vectors of the matrix C.

$$
\mathbf{C}=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]
$$

In order to compute the diagonalization of \mathbf{A} we also need \mathbf{C}^{-1}. This we compute using the technique of Section 1.5:

$$
\left[\begin{array}{cc|cc}
1 & -2 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \xrightarrow{R_{1} \rightarrow R_{1}+2 R_{2}}\left[\begin{array}{ll|ll}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \Rightarrow \quad \mathbf{C}^{-1}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

Finally,

$$
\begin{aligned}
\mathbf{D} & =\mathbf{C}^{-\mathbf{1}} \mathbf{A C}=\mathbf{C}^{-\mathbf{1}}(\mathbf{A C}) \\
& =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
2 & 6 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 2 \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

