LECTURE 16

Diagonalization of Matrices

Recall that a **diagonal matrix** is a square $n \times n$ matrix with non-zero entries only along the diagonal from the under left to the lower right (the *main diagonal*).

Diagonal matrices are particularly convenient for eigenvalue problems since the eigenvalues of a diagonal matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \vdots \\ \vdots & \cdots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix}$$

coincide with the diagonal entries $\{a_{ii}\}$ and the eigenvector corresponding the eigenvalue a_{ii} is just the i^{th} coordinate vector.

EXAMPLE 16.1. Find the eigenvalues and eigenvectors of

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right]$$

• The characteristic polynomial is

$$P_{\mathbf{A}}(\lambda) = \det \left(\mathbf{A} - \lambda \mathbf{I}\right) = \det \left[\begin{array}{cc} 2 - \lambda & 0\\ 0 & 3 - \lambda \end{array}\right] = (2 - \lambda) (3 - \lambda)$$

Evidently $P_{\mathbf{A}}(\lambda)$ has roots at $\lambda = 2, 3$. The eigenvectors corresponding to the eigenvalue $\lambda = 2$ are solutions of

$$(\mathbf{A} - (2)\mathbf{I}) \mathbf{x} = \mathbf{0} \Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow x_2 = 0$$
$$\Rightarrow \mathbf{x} \in span\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$

The eigenvectors corresponding to the eigenvalue $\lambda = 3$ are solutions of

$$(\mathbf{A} - (3)\mathbf{I}) \mathbf{x} = \mathbf{0} \Rightarrow \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow -x_1 = \mathbf{0}$$
$$\Rightarrow \mathbf{x} \in span \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

This property (that the eigenvalues of a diagonal matrix coincide with its diagonal entries and the eigenvectors corresponds to the corresponding coordinate vectors) is so useful and important that in practice one often tries to make a change of coordinates just so that this will happen. Unfortunately, this is not always possible; however, if it is possible to make a change of coordinates so that a matrix becomes diagonal we say that the matrix is *diagonalizable*. More formally,

LEMMA 16.2. Let **A** be a real (or complex) $n \times n$ matrix, let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be a set of n real (respectively, complex) scalars, and let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be a set of n vectors in \mathbb{R}^n (respectively, \mathbb{C}^n). Let **C** be the $n \times n$

matrix formed by using \mathbf{v}_j for j^{th} column vector, and let \mathbf{D} be the $n \times n$ diagonal matrix whose diagonal entries are $\lambda_1, \lambda_2, \ldots, \lambda_n$. Then

$$AC = CD$$

if and only if $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of \mathbf{A} and each \mathbf{v}_j is an eigenvector of \mathbf{A} corresponding the eigenvalue λ_j .

Proof. Under the hypotheses

$$\mathbf{AC} = \mathbf{A} \begin{bmatrix} | & \cdots & | \\ \mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\ | & \cdots & | \end{bmatrix} = \begin{bmatrix} | & \cdots & | \\ \mathbf{Av}_{1} & \cdots & \mathbf{Av}_{n} \\ | & \cdots & | \end{bmatrix}$$
$$\mathbf{CD} = \begin{bmatrix} | & \cdots & | \\ \mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} \lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{bmatrix} = \begin{bmatrix} | & \cdots & | \\ \lambda_{1}\mathbf{v}_{1} & \cdots & \lambda_{n}\mathbf{v}_{n} \\ | & \cdots & | \end{bmatrix} \end{bmatrix}$$

and so AC = CD implies

$$\mathbf{A}\mathbf{v}_1 = \lambda_1\mathbf{v}_1$$
$$\vdots$$
$$\mathbf{A}\mathbf{v}_n = \lambda_n\mathbf{v}_n$$

and vice-versa.

Now suppose AC = CD, and the matrix C is invertible. Then we can write

$$\mathbf{D} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$$

And so we can think of the matrix C as converting A into a diagonal matrix.

DEFINITION 16.3. An $n \times n$ matrix **A** is **diagonalizable** if there is an invertible $n \times n$ matrix **C** such that $\mathbf{C}^{-1}\mathbf{A}\mathbf{C}$ is a diagonal matrix. The matrix **C** is said to **diagonalize A**.

THEOREM 16.4. An $n \times n$ matrix **A** is diagonalizable iff and only if it has n linearly independent eigenvectors.

Proof. The argument here is very simple. Suppose **A** has *n* linearly independent eigenvectors. Then the matrix **C** formed by using these eigenvectors as column vectors will be invertible (since the rank of **C** will be equal to *n*). On the other hand, if **A** is diagonalizable then, by definition, there must be an invertible matrix **C** such that $\mathbf{D} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$ is diagonal. But then the preceding lemma says that the columns vectors of **C** must coincide with the eigenvectors of **A**. Since **C** is invertible, these *n* column vectors must be linearly independent. Hence, **A** has *n* linearly independent eigenvectors.

EXAMPLE 16.5. Find the matrix that diagonalizes

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 6 \\ 0 & -1 \end{array} \right]$$

• First we'll find the eigenvalues and eigenvectors of **A**.

$$0 = \det \left(\mathbf{A} - \lambda \mathbf{I} \right) = \det \left[\begin{array}{cc} 2 - \lambda & 6 \\ 0 & -1 - \lambda \end{array} \right] = (2 - \lambda)(-1 - \lambda) \quad \Rightarrow \quad \lambda = 2, -1$$

The eigenvectors corresponding to the eigenvalue $\lambda = 2$ are solutions of $(\mathbf{A} - (2)\mathbf{I})\mathbf{x} = \mathbf{0}$ or

$$\begin{bmatrix} 0 & 6 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} 6x_2 = 0 \\ -3x_2 = 0 \end{bmatrix} \implies x_2 = 0 \implies x = r \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

The eigenvectors corresponding to the eigenvalue $\lambda = -1$ are solutions of $(\mathbf{A} - (-1)\mathbf{I})\mathbf{x} = \mathbf{0}$ or

$$\begin{bmatrix} 3 & 6 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies 3x_1 + 6x_2 = 0 \\ 0 = 0 \implies x_1 = -2x_2 \implies \mathbf{x} = r \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

So the vectors $\mathbf{v}_1 = [1,0]$ and $\mathbf{v}_2 = [-2,1]$ will be eigenvectors of \mathbf{A} . We now arrange these two vectors as the column vectors of the matrix \mathbf{C} .

$$\mathbf{C} = \left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array} \right]$$

In order to compute the diagonalization of \mathbf{A} we also need \mathbf{C}^{-1} . This we compute using the technique of Section 1.5:

$$\begin{bmatrix} 1 & -2 & | & 1 & 0 \\ 0 & 1 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1 + 2R_2} \begin{bmatrix} 1 & 0 & | & 1 & 2 \\ 0 & 1 & | & 0 & 1 \end{bmatrix} \Rightarrow \mathbf{C}^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
ally.

Finally,

$$\mathbf{D} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C} = \mathbf{C}^{-1} (\mathbf{A}\mathbf{C})$$

$$= \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \left(\begin{bmatrix} 2 & 6 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$