
LECTURE 9

Integrating Factors

Recall that a differential equation of the form

(1) M(x, y) +N(x, y)y′ = 0

is said to be exact if

(2)
∂M

∂y
=
∂N

∂x
,

and that in such a case, we could always find an implicit solution of the form

(3) ψ(x, y) = C

with

(4)
∂ψ
∂x = M(x, y)
∂ψ
∂y = N(x, y) .

Even if (1) is not exact, it is sometimes possible multiply it by another function of x and/or y to obtain an
equivalent equation which is exact. That is, one can sometimes find a function µ(x, y) such that

(5) µ(x, y)M(x, y) + µ(x, y)N(x, y)y′ = 0

is exact. Such a function µ(x, y) is called an ntegrating factor. If an integrating factor can be found, then
the original differential equation (1) can be solved by simply constructing a solution to the equivalent exact
differential equation (5).

Example 9.1. Consider the differential equation

x2y3 + x
(
1 + y2

) dy
dx

= 0 .

This equation is not exact; for

∂M
∂y = ∂

∂y

(
x2y3

)
= 3x2

∂N
∂x = ∂

∂x

(
x
(
1 + y2

))
= 1 + y2 .

and so
∂M

∂y
6= ∂N

∂x
.

However, if we multiply both sides of the differential equation by

µ(x, y) =
1

xy3

we get

x+
1 + y2

y3
dy

dx
= 0

which is not only exact, it is also separable. The general solution is thus obtained by calculating

H1(x) =
∫
xdx = 1

2x
2

H2(y) =
∫

1+y2

y3 dy = 1
2y2 + ln |y|

38
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and then demanding that y is related to x by

H1(x) +H2(y) = C

or
1

2
x2 − 1

2y2
+ ln |y| = C .

Now, in general, the problem of finding an integrating factor µ(x, y) for a given differential equation is very
difficult. In certain cases, it is rather easy to find an integrating factor.

0.1. Equations with Integrating Factors that depend only on x. Consider a general first order
differential equation

(6) M(x, y) +N(x, y)
dy

dx
= 0 .

We shall suppose that there exists an integrating factor for this equation that depends only on x:

(7) µ = µ(x) .

If µ is to really be an integrating factor, then

(8) µ(x)M(x, y) + µ(x)N(x, y)
dy

dx

must be exact; i.e.,

(9)
∂

∂y
(µ(x)M(x, y)) =

∂

∂x
(µ(x)N(x, y)) .

Carrying out the differentiations (using the product rule, and the fact that µ(x) depends only on x), we get

µ
∂M

∂y
=
dµ

dx
N + µ

∂N

∂x

or

(10)
dµ

dx
=

1

N

(
∂M

∂y
− ∂N

∂x

)
µ .

Now if µ is depends only on x (and not on y), then necessarily dµ
dx depends only on x. Thus, the self-

consistency of equations (7) and (10) requires the right hand side of (10) to be a function of x alone. We
presume this to be the case and set

p(x) = − 1

N

(
∂M

∂y
− ∂N

∂x

)
so that we can rewrite (10) as

(11)
dµ

dx
+ p(x)µ = 0 .

This is a first order linear differential equation for µ hat we can solve! According to the formula developed
in Section 2.1, the general solution of (11) is

(12) µ(x) = A exp

[∫
−p(x)dx

]
= A exp

[∫
1

N

(
∂M

∂y
− ∂N

∂y

)
dx

]
.

The formula (12) thus gives us an integrating factor for (6) so long as

1

N

(
∂M

∂y
− ∂N

∂x

)
depends only on x.
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0.2. Equations with Integrating Factors that depend only on y. Consider again the general
first order differential equation

(13) M(x, y) +N(x, y)
dy

dx
= 0 .

We shall suppose that there exists an integrating factor for this equation that depends only on y:

(14) µ = µ(y) .

If µ is to really be an integrating factor, then

(15) µ(y)M(x, y) + µ(y)N(x, y)
dy

dx

must be exact; i.e.,

(16)
∂

∂y
(µ(y)M(x, y)) =

∂

∂x
(µ(y)N(x, y)) .

Carrying out the differentiations (using the product rule, and the fact that µ(y) depends only on y), we get

dµ

dy
M + µ

∂M

∂y
= µ

∂N

∂x
or

(17)
dµ

dy
=

1

M

(
∂N

∂x
− ∂M

∂y

)
µ .

Now since µ is depends only on y (and not on x), then necessarily dµ
dy depends only on y. Thus, the self-

consistency of equations (14) and (17) requires the right hand side of (10) to be a function of y alone. We
presume this to be the case and set

p(y) = − 1

M

(
∂N

∂x
− ∂M

∂y

)
so that we can rewrite (10) as

(18)
dµ

dy
+ p(y)µ = 0 .

According to the formula developed in Section 2.1, the general solution of (18) is

(19) µ(y) = A exp

[∫
−p(y)dx

]
= A exp

[∫
1

M

(
∂N

∂x
− ∂M

∂y

)
dx

]
.

The formula (19) thus gives us an integrating factor for (13) so long as

1

M

(
∂N

∂x
− ∂M

∂y

)
depends only on y.

0.3. Summary: Finding Integrating Factors. Suppose that

(20) M(x, y) +N(x, y)y′ = 0

is not exact.

A. If

(21) F1 =

∂M
∂y −

∂N
∂x

N

depends only on x then

(22) µ(x) = exp

(∫
F1(x)dx

)
will be an integrating factor for (20).
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B. If

(23) F2 =

∂N
∂x −

∂M
∂y

M
depends only on y then

(24) µ(y) = exp

(∫
F2(y)dy

)
will be an integrating factor for (20).

C. If neither A nor B is true, then there is little hope of constructing an integrating factor.

Example 9.2.

(25) (3x2y + 2xy + y3)dx+ (x2 + y2)dy = 0

Here
M(x, y) = 3x2y + 2xy + y3

N(x, y) = x2 + y2 .

Since
∂M

∂y
= 3x2 + 2x+ 3y2 6= 2x =

∂N

∂x
this equation is not exact.

We seek to find a function µ such that

µ(x, y)(3x2y + 2xy + y3)dx+ µ(x, y)(x2 + y2)dy = 0

is exact. Now

F1 ≡
∂M
∂y −

∂N
∂x

N
=

3x2 + 2x+ 3y2 − 2x

x2 + y2
=

3(x2 + y2)

x2 + y2
= 3

F2 ≡
∂N
∂x −

∂M
∂y

M
=

2x− 3x2 − 2x− 3y2

3x2y + 2xy + y3
=
−3
(
x2 + y2

)
3x2y + 2xy + y3

Since F2 depends on both x and y, we cannot construct an integrating factor depending only on y from
F2. However, since F1 does not depend on y, we can consistently construct an integrating factor that is a
function of x alone. Applying formula (22) we get

µ(x) = exp

(∫
F1(x)dx

)
= exp

[∫
3dx

]
= e3x .

We can now employ this µ(x) as an integrating factor to construct a general solution of

e3x(3x2 + 2x+ 3y2) + e3x(x2 + y2)y′ = 0

which, by construction, must be exact. So we seek a function ψ such that

(26)
∂ψ
∂x = e3x(3x2y + 2xy + y3)
∂ψ
∂y = e3x(x2 + y2) .

Integrating the first equation with respect to x and the second equation with respect to y yeilds

ψ(x, y) = x2ye3x + 1
3y

3e3x + h1(y)
ψ(x, y) = x2ye3x + 1

3y
3e3x + h2(x) .

Comparing these expressions for ψ(x, y) we see that we msut take h1(y) = h2(x) = C, a constant. Thus,
function ψ satisfying (26) must be of the form

ψ(x, y) = e3xx2y + e3xy3 + C .

Therefore, the general solution of (25) is found by solving

e3xx2y + e3xy3 = C
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for y.


