Math 2233 Homework Set 7

1. Determine the lower bound for the radius of convergence of series solutions about each given point x_0 .

(a)
$$y'' + 4y' + 6xy = 0$$
, $x_0 = 0$

(b)
$$(x-1)y'' + xy' + 6xy = 0$$
, $x_0 = 4$

(b)
$$(x-1)y'' + xy' + 6xy = 0$$
, $x_0 = 4$
(c) $(4+x^2)y'' + 4xy' + y = 0$, $x_0 = 0$

(d)
$$(1+x^2)y'' + 4xy' + y = 0$$
, $x_0 = 2$

2. Determine the singular points of the following differential equations and state whether they are regular or irregular singular points.

1

(a)
$$xy'' + (1-x)y' + xy = 0$$

(b)
$$x^2(1-x)^2y'' + 2xy + 4y = 0$$

(b)
$$x^2(1-x)^2y'' + 2xy + 4y = 0$$

(c) $(1-x^2)^2y'' + x(1-x)y' + (1+x)y = 0$

3. Compute the Laplace transform of the following functions.

(a)
$$f(t) = t$$

(b)
$$f(t) = t^n$$

4. Invert the following Laplace transforms.

(a)
$$\mathcal{L}[f] = \frac{3}{s^2 + 4}$$

(b)
$$\mathcal{L}[f] = \frac{2}{s^2 + 3s - 4}$$

(c)
$$\mathcal{L}[f] = \frac{2s+2}{s^2+2s+5}$$

(d)
$$\mathcal{L}[f] = \frac{2s+1}{s^2-2s+2}$$

(e)
$$\mathcal{L}[f] = \frac{1-2s}{s^2+4s+5}$$

5. Use the Laplace transform to solve the given initial value problem.

(a)
$$y'' - y' - 6y = 0$$
 ; $y(0) = 1$, $y'(0) = -1$

(b)
$$y'' - 2y' + 2y = 0$$
 ; $y(0) = 0$, $y'(0) = 1$

(c)
$$y'' - 2y' - 2y = 0$$
 ; $y(0) = 2$, $y'(0) = 0$

(d)
$$y'' + 2y' + y = 4e^{-t}$$
 ; $y(0) = 2$, $y'(0) = -1$