1. (15 pts) Use a change of variable to solve the following first order equation. (Hint: note that it is homogeneous of degree zero).

\[y' = \frac{xy + y^2}{x^3} \]

\[\frac{dy}{dx} = \left(\frac{y}{x} \right) + \left(\frac{y}{x} \right)^2 \]

Under the substitution \(u = y/x \), or equivalently \(y = xu \), we have

\[\frac{dy}{dx} = u + x \frac{du}{dx} \]

Therefore, our original differential equation is equivalent to

\[u + x \frac{du}{dx} = \frac{dy}{dx} = \left(\frac{y}{x} \right) + \left(\frac{y}{x} \right)^2 = u + u^2 \]

 Cancelling the terms \(u \) that appear on the extreme sides of this equation yields

\[x \frac{du}{dx} = u^2 \]

or

\[\frac{du}{u^2} = \frac{dx}{x} \]

Integrating both sides yields

\[-\frac{1}{u} = \ln |x| + C \]

Now we recall \(u = y/x \) to get

\[-\frac{x}{y} = \ln |x| + C \]

or

\[y(x) = -\frac{x}{\ln |x| + C} \]

2. Given that \(y_1(x) = x \) and \(y_2(x) = x^3 \) are solutions to \(x^2y'' - 3xy' + 3y = 0 \)

(a) (5 pts) Show that the functions \(y_1(x) \) and \(y_2(x) \) are linearly independent.

\[W[y_1, y_2](x) = (x)(3x^2) - (1)(x^3) = 2x^3 \neq 0 \]

so \(y_1(x) \) and \(y_2(x) \) must be linearly independent. □
(b) (5 pts) Write down the general solution.

\[y(x) = c_1 y_1(x) + c_2 y_2(x) = c_1 x + c_2 x^3 \]

(c) (5 pts) Find the solution satisfying the initial conditions \(y(1) = 1, y'(1) = 1 \).

\[1 = y(1) = c_1 (1) + c_2 (1^2) = c_1 + c_2 \]
\[1 = y'(1) = c_1 + c_2 (3x^2) \big|_{x=1} = c_1 + 3c_2 \]

Subtracting the second equation from the first yields
\[0 = 0 - 2c_2 \implies c_2 = 0 \]

But then the first equation implies \(c_1 = 1 \). Thus,
\[c_1 = 1 \]
\[c_2 = 0 \]

and the solution satisfying the given initial conditions is
\[y(x) = x \]

3. (10 pts) Given that \(y_1(x) = x^2 \) is one solution of \(x^2 y'' - 4xy' + 6y = 0 \), use Reduction of Order to determine the general solution.

- Putting the differential equation in standard form we see that the term \(p(x) \) in the Reduction of Order formula is \(p(x) = -\frac{4}{x^2} \). Thus, a second linearly independent solution is

\[y_2(x) = y_1(x) \int \frac{1}{(y_1(s))^2} \exp \left[-\int \frac{p(t)dt}{t} \right] ds \]
\[= x^2 \int_1^x \frac{1}{s^4} \exp \left[+4 \int \frac{dt}{t} \right] ds \]
\[= x^2 \int_1^x s^{-4} \exp (4 \ln |s|) ds \]
\[= x^2 \int_1^x s^{-4} ds \]
\[= x^2 \int_1^x ds \]
\[= x^3 \]

Now that we have two linearly independent solutions, we can write down the general solution:
\[y(x) = c_1 y_1(x) + c_2 y_2(x) = c_1 x^2 + c_2 x^3 \]

4. Determine the general solution of the following differential equations.

(a) (5 pts) \(y'' - 3y' - 3y = 0 \)
- The characteristic equation for this homogeneous linear equation with constant coefficients is
 \[\lambda^2 - 3\lambda - 3 = 0. \]

 The roots of this equation are determined by the Quadratic Formula
 \[\lambda = \frac{3 \pm \sqrt{9 - (4)(-3)}}{2} = \frac{3 \pm \sqrt{33}}{2} \]

 So
 \[y_1(x) = e^{\frac{3 + \sqrt{33}}{2}x} \]
 \[y_2(x) = e^{\frac{3 - \sqrt{33}}{2}x} \]

 and the general solution is
 \[y(x) = c_1 e^{\frac{3 + \sqrt{33}}{2}x} + c_2 e^{\frac{3 - \sqrt{33}}{2}x} \]

(b) (5 pts) \(y'' + 10y' + 25y = 0 \)

- The characteristic equation for this homogeneous linear equation with constant coefficients is
 \[0 = \lambda^2 + 10\lambda + 25 = (\lambda + 5)^2 \]

 and so we have a single root \(\lambda = -5 \). The two linearly independent solutions are thus
 \[y_1(x) = e^{-5x} \]
 \[y_2(x) = xe^{-5x} \]

 and the general solution is
 \[y(x) = c_1 e^{-5x} + c_2 xe^{-5x} \]

(c) (5 pts) \(y'' - 4y' + 13y = 0 \)

- The characteristic equation for this homogeneous linear equation with constant coefficients is
 \[\lambda^2 - 4\lambda + 13 = 0. \]

 Applying the Quadratic Formula we obtain
 \[\lambda = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i \]

 We thus have a pair of complex roots. The corresponding linearly independent (real-valued) solutions are
 \[y_1(x) = e^{2x} \cos(3x) \]
 \[y_2(x) = e^{2x} \sin(3x) \]

 and so the general solution is
 \[y(x) = c_1 e^{2x} \cos(3x) + c_2 e^{2x} \sin(3x) \]

5. (10 pts) Explain in words how one could use Reduction of Order and the Method of Variation of Parameters to construct the general solution of \(x^2y'' - 2y = 3x^3 - 1 \), given that \(y_1(x) = x^2 \) is a solution of \(x^2y'' - 2y = 0 \). (It is not necessary to carry out any of the calculations.)
• First we’d use the Reduction of Order formula

\[y_2(x) = y_1(x) \int^{x} \frac{1}{(y_1(s))^2} \exp \left[- \int^{s} p(t) \, dt \right] \, ds \]

to compute a second linearly independent solution \(y_2(x) \) of \(x^2 y'' - 2y = 0 \). Next we’d use the Variation of Parameters formula

\[y_p(x) = -y_1(x) \int^{x} \frac{y_2(s)g(s)}{W[y_1, y_2](s)} \, ds + y_2(x) \int^{x} \frac{y_1(s)g(s)}{W[y_1, y_2](s)} \, ds \]

with \(g(s) = (3x^2 - 1)/x^2 \) to construct a particular solution of \(x^2 y'' - 2y = 3x^2 - 1 \). We’d then have all the ingredients necessary to write down the general solution:

\[y(x) = y_p(x) + c_1 y_1(x) + c_2 y_2(x) \]

6. Given that \(y_1(x) = e^x \) and \(y_2(x) = e^{2x} \) are solutions of \(y'' - 3y' + 2y = 0 \).

(a) (10 pts) Use the Method of Variation of Parameters to find a particular solution of

\[y'' - 3y' + 2y = e^x \]

• Before applying the Variation of Parameters formula we note that

\[W[y_1, y_2](x) = (e^x) (2e^{2x}) - (e^x) (e^{2x}) = e^{3x} \]

and

\[y(x) = e^x \]

We can now compute a particular solution to the non-homogeneous equation

\[y_p(x) = -y_1(x) \int^{x} \frac{y_2(s)g(s)}{W[y_1, y_2](s)} \, ds + y_2(x) \int^{x} \frac{y_1(s)g(s)}{W[y_1, y_2](s)} \, ds \]

\[= -e^x \int^{x} \frac{e^{2x}(e^s)}{e^{3x}} \, ds + e^{2x} \int^{x} \frac{e^s(e^s)}{e^{3x}} \, ds \]

\[= -e^x \int^{x} ds + e^{2x} \int e^{-s} ds \]

\[= -xe^x + e^{2x} (-e^{-x}) \]

\[= -xe^x - e^x \]

\[\approx -xe^x \]

(The second term can be ignored since it is a solution to the corresponding homogeneous equation.)

(b) (10 pts) Find the solution satisfying \(y(0) = 0, y'(0) = 2 \).

• The general solution to the non-homogeneous problem in part (a) is

\[y(x) = y_p(x) + c_1 y_1(x) + c_2 y_2(x) = -xe^x + c_1 e^x + c_2 e^{2x} \]

Applying the initial conditions yields

\[0 = y(0) = -(0)e^0 + c_1 e^0 + c_2 e^0 = c_1 + c_2 \]

\[2 = y'(0) = -e^x - xe^x + c_1 e^x + 2c_2 e^{2x} \bigg|_{x=0} = -1 + c_1 + 2c_2 \]

We thus have

\[c_1 + c_2 = 0 \]

\[c_1 + 2c_2 = 3 \]
Using the first equation we can substitute \(c_1 = -c_2 \) into the second to obtain
\[
c_2 = 3
\]
from which we can conclude also that \(c_1 = 3 \). Hence the solution to the initial value problem is
\[
y(x) = -xe^x - 3e^x + 3e^{2x}
\]

7. Find the general solution of the following Euler-type differential equations.

(a) (5 pts) \(x^2y'' + 4xy' + y = 0 \)

- Substituting \(y(x) = x^r \) into the differential equation yields
 \[
 (r(r - 1) + 4r + 1)x^r = 0
 \]
so we must have
\[
0 = r(r - 1) + 4r + 1 = r^2 + 3r + 1
\]
Applying the Quadratic Formula yields
\[
r = \frac{-3 \pm \sqrt{9 - 4(1)(1)}}{2} = \frac{-3 \pm \sqrt{5}}{2}
\]
Hence we have the following two linearly independent solutions
\[
y_1(x) = x^{\frac{-3 + \sqrt{5}}{2}}
\]
\[
y_2(x) = x^{\frac{-3 - \sqrt{5}}{2}}
\]
and the general solution is
\[
y(x) = c_1 x^{\frac{-3 + \sqrt{5}}{2}} + c_2 x^{\frac{-3 - \sqrt{5}}{2}}
\]

(b) (5 pts) \(x^2y'' - 5xy' + 9y = 0 \)

- Substituting \(y(x) = x^r \) into the differential equation yields
 \[
 (r(r - 1) - 5r + 9)x^r = 0
 \]
so we must have
\[
0 = r(r - 1) - 5r + 9 = r^2 - 6r + 9 = (r - 3)^2
\]
We thus have a single root \(r = 3 \) and thus two linearly independent solutions will be
\[
y_1(x) = x^{-3}
\]
\[
y_2(x) = x^{-3}\ln|x|
\]
The general solution is thus
\[
y(x) = c_1 x^{-3} + c_2 x^{-3}\ln|x|
\]

(c) (5 pts) \(x^2y'' - 5xy' + 13y = 0 \)

- Substituting \(y(x) = x^r \) into the differential equation yields
 \[
 (r(r - 1) - 5r + 13)x^r = 0
 \]
so we must have
\[
0 = r(r - 1) - 5r + 13 = r^2 - 6r + 13
\]
Applying the Quadratic Formula we see that

\[r = \frac{6 \pm \sqrt{36 - (4)(13)}}{2} = \frac{6 \pm \sqrt{36 - 52}}{2} = \frac{-6 \pm \sqrt{-16}}{2} = \frac{6 \pm 4i}{2} = 3 \pm 2i \]

We thus have the following (real-valued) linearly independent solutions

\[y_1(x) = x^3 \cos (2 \ln |x|) \]
\[y_2(x) = x^3 \sin (2 \ln |x|) \]

and so the general solution is

\[y(x) = c_1 x^3 \cos (2 \ln |x|) + c_2 x^3 \sin (2 \ln |x|) \]