LECTURE 31

Definite and Indefinite Integrals

The Fundamental Theorem of Calculus came in two parts:

THEOREM 31.1. Let f be a continuous function on the interval [a,b]. Then

() Ifg(@)= [, f(t)dt , then g' (z) = [ (x).
(ii) If F (z) is an antiderivative of f (x), then f; f(x)dz = F(b) — F (a).

The expression

/abf(x)dx

is called definite integral of f(x) from a to b. It is just a number (for any fixed choice of a and b).
The second part of the Fundamental Theorem says that that this number can be computed by finding an
antiderivative F' of f and then computing the difference between its value at x = b and its value at x = a.

/ayf(x)dx

In general, given an expression of the form

we refer to

e [ as the integration sign,

e y as the upper endpoint of integration,
e a as the lower endpoint of integration,
e f as the integrand of the integral, and
e 1z as the variable of integration..

The expression

/wf(t)dt

is called an indefinite integral of the function f (z). It is just the anti-derivative of f () (up to a constant
that gets ignored). Sometimes we write this as simply

/f (x)dx

but continue to regard the result as a function of .
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What we formally called a Table of Antiderivatives, will now be called a Table of Indefinite Integrals

f (x) [ f(x)dx
1’" ﬁantl
1 In |z|
sin () —cos ()
cos (x) sin ()
sec? (z) tan (x)
csc? (z) —cot ()
sec (z)tan (z) | sec(z)
csc (x) cot (z) | —csc (x)
e)m %e)\az

1. The Net Change Theorem

Recall that the Part (ii) of the Fundamental Theorem of Calculus says

/bfmdxF(b)F(a)

where F'(x) is any anti-derivative of f. If we replace the integrand f by its derivative, then we get the
statement

b
*) / f () de = £ () — f (a)

because f () is alway an anti-derivative of its derivative. Now let us reinteprete this last equation: When
we think of f' (z) = % as prescribing the rate at which f (x) changes with respect to x, then equation (*)
says the following

THEOREM 31.2. The integral of a rate of change of a function f between x = a and x = b yields precisely
the difference between the value of f (x) at x =b and x = a.

This interpretation of the second part of the Fundamental Theorem is very useful for applications.

ExXAMPLE 31.3. An object moves along a line in such a way that its velocity at time ¢ is given by
v(t) =t —t+1.

How far does it move between t = 1 and ¢t = 4.

e Let z (t) be the function that prescribes the position of the object at time ¢. We need to compute
z(4) -z (1)
from the fact the its velocity is given by
dr
=—=t>—t+1
v(t)=— +

We can do this using Theorem 31.2, which says for the situation at hand that,

4 de
/1 Lt = (a)~ ()

And so we just need to compute

4 4
dx 9 153 1,
Zat = —t+Ddt= (=3 -=
/1 —rdt /l(t t+1)dt <3t 5! +t)

4

1

64 16 1 1

= 44— 4--1
3 2+ 3+2
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So the total distance travelled between t =1 and t =4 is %

2. Varying Endpoints of Integration

In Part (i) of the Fundamental theorem

(%) ifg(x)/zf@)dt — J@)=1()

the upper end point of integration x is regarded as a variable parameter, and the integral of f is used to
define a new function g (x). Now once we have a function of z we can use it to build more complicated
functions. For example we could define a function

h(z) =g (2?)

What is this new function, well all we need to do is replace the x in (**) by 22
IL‘2
h(x) :g(x2) :/ f @) dt

Ok. Now what does the Fundamental Theorem say about the derivative of h (z)? To answer this question
correctly we have to first utilize the Chain Rule:

dh_dg| (d ) dg
dr  du wep2 \ dT du

Now ¢’ (u) is given by the Fundamental Theorem

g(u)/um)dt — W)=/

(22)

Thus
dg 2
ol = @l = 1 ()
and so
[ rwa= @) e
dz /,
In general,

THEOREM 31.4. Suppose h (x) is defined by

p(x)
h(z) = / f()dt

then its derivative is

In other words,
d [P@

dx J,

Proof. We can regard h (x) as a composed function

h(z) =g (p(2))

where

g(u)/uf@)dt
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d d dg dp
%h@c):@g(p(x)) ( 49 M) (%)

Now the Fundamental Theorem of Calculus, Part (i), tells us that

Y
DY (£ @) (L) = £ 0 (@) (@)
) w0 (D)

The Chain Rule then says

and so we have

d [ dg
%h(x) N (du

and the stated result follows.




