LECTURE 22

The Mean Value Theorem

We've just seen how derivatives can be used to find and classify the local maxima and minima of a function. In fact, with just a little more work we can actually obtain a sketch of what the graph of a function has to look like without actually plotting the graph point by point.

Before doing so, however, I need to state the fundamental theorems upon which this sort of analysis is based.

We'll start with Rolle's theorem.

THEOREM 22.1 (Rolle's Theorem). Let f be a function that satisfies the following three conditions

- (i) $f(x)$ is continuous on the closed interval $[a, b]$ (ii) $f(x)$ is differentiable on the open interval (a, b) (iii) $f(a) = f(b)$
-

Then there is a point $c \in (a, b)$ such that $f'(c) = 0$.

Proof. There are three possibilities to consider.

• $f(x) = K$, a constant.

In this case, $f'(x) = 0$ identically, and so for any number $c \in [a, b]$ we will have $f'(c) = 0$ • $f(x) > f(a)$ at some point $x \in (a, b)$.

By the Extreme Value Theorem, we know that f attains a maximum value somewhere in $[a, b]$. However, since $f(a) < f(x)$, and $f(b) < f(x)$ (by condition (iii)) this maximum will not occur at the endpoints of the interval. So it must be a local maximum inside the interval; say this maximum occurs at $x = c$. But then since f has a local maximum at $x = c$ we must have $f'(c) = 0$. • $f(x) < f(a)$ at some point $x \in (a, b)$.

The Extreme Value Theorem, tells us that f attains a minimum value somewhere in $[a, b]$, and since there exists $x \in (a, b)$ such that $f(x) < f(a) = f(b)$, this minimal value doesn't occur at the endpoints a or b. Thus, there must be a local minimum inside (a, b) , say at the point $x = c$. But then since $x = c$ is a local minimum of f, we have $f'(c) = 0$.

$$
\mathbf{L}^{\prime}
$$

EXAMPLE 22.2. Prove that $x^3 + x - 1$ has exactly one real root.

• First we show that $x^3 + x - 1$ has at least one real root. To see this, we note $f(x) = x^3 + x - 1$ is continuous and

$$
\begin{array}{rcl} f\left(0\right) & = & -1 \\ f\left(1\right) & = & 1 \end{array}
$$

By the Intermediate Value Theorem, we know that since 0 lies between $f(0)$ and $f(1)$, somewhere in the inteval $(0, 1)$ there's a number c such that $f(c) = 0$. That number c will of course also satisfy $c^3 + c - 1 = 0.$

Now suppose we had two numbers c_1 and c_2 such that $f(c_i) = 0$. Then Rolle's Theorem tells us that there is a point d between c_1 an c_2 such that $f'(d) = 0$. However,

$$
f'(x) = 3x^2 + 1 \ge 1 \qquad \text{for all } x
$$

We conclude that we cannot have two such roots c_1 and c_2 without contradicting Rolle's Theorem. So the statement is proved.

THEOREM 22.3 (The Mean Value Theorem). Let f be a function that satisfies

- f is continuous on the closed interval $[a, b]$
- f is differentiable on the open interval (a, b)

Then there is a number $c \in (a, b)$ such that

$$
f'(c) = \frac{f(b) - f(a)}{b - a}
$$

Proof.

Consider the function

$$
h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)
$$

(This happens to be the function that measures that measures the vertical distance between the graph of $f(x)$ and the secant line through $(a, f(a))$ and $(b, f(b))$.) Since f is continuous and differentiable and since

$$
g(x) = -\frac{f(b) - f(a)}{b - a} (x - a)
$$

is continuous and differentiable, so will be $h(x) = f(x) + g(x)$. We also have

$$
h(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a} (a - a) = 0
$$

$$
h(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a} (b - a) = 0
$$

So we can apply Rolle's Theorem to conclude that somewhere between $x = a$ and $x = b$ there is a point $x = c$ where $h'(c) = 0$. But then

$$
0 = h'(c) = \left(f'(x) - \frac{f(b) - f(a)}{b - a}\right)\Big|_{x = c} = f'(c) - \frac{f(b) - f(a)}{b - a}
$$

Hence there is a point $c \in (a, b)$ where

$$
f'(c) = \frac{f(b) - f(a)}{b - a}
$$

COROLLARY 22.4. Suppose $f'(x) = 0$ for all x in an interval [a, b], then $f(x)$ is a constant function on $(a, b).$

Proof. Let x_1, x_2 be any two points inside the interval [a, b] chosen so that $a < x_1 < x_2 < b$. By the Mean Value Theorem we know that there exists $c \in (x_1, x_2)$ so that

$$
f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}
$$

But $f'(x) = 0$ everywhere in $[a, b]$. Hence,

$$
0 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \implies f(x_2) = f(x_1)
$$

for all points $x_1, x_2 \in (a, b)$. We conclude that f is constant on (a, b) .

Example 22.5. Prove the identity

$$
\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}
$$

Set

$$
f(x) = \tan^{-1}(x) + \cot^{-1}(x)
$$

Using the identities

$$
\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2} \n\frac{d}{dx} \cot^{-1}(x) = -\frac{1}{1+x^2}
$$

we find

$$
f'(x) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0
$$

Therefore, by the Corollary above, $f(x)$ must be a constant.

$$
\tan^{-1}(x) + \cot^{-1}(x) = C
$$

To figure out the constant we can put $x = 1$. Now when

$$
1 = \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \implies \theta = 45^{\circ} \sim \pi/4 \text{ radians}
$$

so tan⁻¹ (1) = $\pi/4$. Similarly,

$$
1 = \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \implies \theta = 45^{\circ} \sim \pi/4 \text{ radians}
$$

Hence,

$$
C = \tan^{-1}(1) + \cot^{-1}(1) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}
$$

Thus, the constant C is $\pi/2$. The stated identity now follows.