
LECTURE 22

The Mean Value Theorem

We’ve just seen how derivatives can be used to find and classify the local maxima and minima of a function.
In fact, with just a little more work we can actually obtain a sketch of what the graph of a function has to
look like without actually plotting the graph point by point.

Before doing so, however, I need to state the fundamental theorems upon which this sort of analysis is
based.

We’ll start with Rolle’s theorem.

Theorem 22.1 (Rolle’s Theorem). Let f be a function that satisfies the following three conditions

(i) f (x) is continuous on the closed interval [a, b]
(ii) f (x) is differentiable on the open interval (a, b)
(iii) f (a) = f (b)

Then there is a point c ∈ (a, b) such that f ′ (c) = 0.

Proof. There are three possibilities to consider.

• f (x) = K, a constant.
In this case, f ′ (x) = 0 identically, and so for any number c ∈ [a, b] we will have f ′ (c) = 0

• f (x) > f (a) at some point x ∈ (a, b).
By the Extreme Value Theorem, we know that f attains a maximum value somewhere in [a, b].

However, since f (a) < f (x), and f (b) < f (x) (by condition (iii)) this maximum will not occur at
the endpoints of the interval. So it must be a local maximum inside the interval; say this maximum
occurs at x = c. But then since f has a local maximum at x = c we must have f ′ (c) = 0.

• f (x) < f (a) at some point x ∈ (a, b).
The Extreme Value Theorem, tells us that f attains a minimum value somewhere in [a, b], and

since there exists x ∈ (a, b) such that f (x) < f (a) = f (b), this minimal value doesn’t occur at the
endpoints a or b. Thus, there must be a local minimum inside (a, b), say at the point x = c. But
then since x = c is a local minimum of f , we have f ′ (c) = 0.

Example 22.2. Prove that x3 + x− 1 has exactly one real root.

• First we show that x3 + x− 1 has at least one real root. To see this, we note f (x) = x3 + x− 1 is
continuous and

f (0) = −1

f (1) = 1

By the Intermediate Value Theorem, we know that since 0 lies between f (0) and f (1), somewhere
in the inteval (0, 1) there’s a number c such that f (c) = 0. That number c will of course also satisfy
c3 + c− 1 = 0.
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Now suppose we had two numbers c1 and c2 such that f (ci) = 0. Then Rolle’s Theorem tells
us that there is a point d between c1 an c2 such that f ′ (d) = 0. However,

f ′ (x) = 3x2 + 1 ≥ 1 for all x

We conclude that we cannot have two such roots c1 and c2 without contradicting Rolle’s Theorem.
So the statement is proved.

Theorem 22.3 (The Mean Value Theorem). Let f be a function that satisfies

• f is continuous on the closed interval [a, b]
• f is differentiable on the open interval (a, b)

Then there is a number c ∈ (a, b) such that

f ′ (c) =
f (b)− f (a)

b− a

Proof.

Consider the function

h (x) = f (x)− f (a)−
f (b)− f (a)

b− a
(x− a)

(This happens to be the function that measures that measures the vertical distance between the graph of
f (x) and the secant line through (a, f (a)) and (b, f (b)).) Since f is continuous and differentiable and since

g (x) = −
f (b)− f (a)

b− a
(x− a)

is continuous and differentiable, so will be h (x) = f (x) + g (x). We also have

h (a) = f (a)− f (a)−
f (b)− f (a)

b− a
(a− a) = 0

h (b) = f (b)− f (a)−
f (b)− f (a)

b− a
(b− a) = 0

So we can apply Rolle’s Theorem to conclude that somewhere between x = a and x = b there is a point
x = c where h′ (c) = 0. But then

0 = h′ (c) =

(
f ′ (x)−

f (b)− f (a)

b− a

)∣∣∣∣
x=c

= f ′ (c)−
f (b)− f (a)

b− a

Hence there is a point c ∈ (a, b) where

f ′ (c) =
f (b)− f (a)

b− a

Corollary 22.4. Suppose f ′ (x) = 0 for all x in an interval [a, b], then f (x) is a constant function on
(a, b).

Proof. Let x1, x2 be any two points inside the interval [a, b] chosen so that a < x1 < x2 < b. By the Mean
Value Theorem we know that there exists c ∈ (x1, x2) so that

f ′ (c) =
f (x2)− f (x1)

x2 − x1

But f ′ (x) = 0 everywhere in [a, b]. Hence,

0 =
f (x2)− f (x1)

x2 − x1
=⇒ f (x2) = f (x1)

for all points x1, x2 ∈ (a, b). We conclude that f is constant on (a, b).
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Example 22.5. Prove the identity

tan−1 (x) + cot−1 (x) =
π

2
Set

f (x) = tan−1 (x) + cot−1 (x)

Using the identities

d

dx
tan−1 (x) =

1

1 + x2

d

dx
cot−1 (x) = −

1

1 + x2

we find

f ′ (x) =
1

1 + x2
−

1

1 + x2
= 0

Therefore, by the Corollary above, f (x) must be a constant.

tan−1 (x) + cot−1 (x) = C

To figure out the constant we can put x = 1. Now when

1 = tan (θ) =
sin (θ)

cos (θ)
=⇒ θ = 45◦ ∼ π/4 radians

so tan−1 (1) = π/4. Similarly,

1 = cot (θ) =
cos (θ)

sin (θ)
=⇒ θ = 45◦ ∼ π/4 radians

Hence,

C = tan−1 (1) + cot−1 (1) =
π

4
+
π

4
=
π

2

Thus, the constant C is π/2. The stated identity now follows.


