LECTURE 22

The Mean Value Theorem

We’ve just seen how derivatives can be used to find and classify the local maxima and minima of a function.
In fact, with just a little more work we can actually obtain a sketch of what the graph of a function has to
look like without actually plotting the graph point by point.

Before doing so, however, I need to state the fundamental theorems upon which this sort of analysis is
based.

We'll start with Rolle’s theorem.

THEOREM 22.1 (Rolle’s Theorem). Let f be a function that satisfies the following three conditions

(i) f(z) is continuous on the closed interval [a, b
(ii) f(x) is differentiable on the open interval (a,b)

(iif) f(a) = f(b)

Then there is a point ¢ € (a,b) such that f'(c) = 0.

Proof. There are three possibilities to consider.

e f(z) =K, a constant.
In this case, f’ (z) = 0 identically, and so for any number ¢ € [a, b] we will have f'(c) =0
e f(x)> f(a) at some point = € (a,b).

By the Extreme Value Theorem, we know that f attains a maximum value somewhere in [a, b].
However, since f (a) < f(x), and f (b) < f (z) (by condition (iii)) this maximum will not occur at
the endpoints of the interval. So it must be a local maximum inside the interval; say this maximum
occurs at = ¢. But then since f has a local maximum at x = ¢ we must have f’(c) = 0.

e f(z) < f(a) at some point z € (a,b).

The Extreme Value Theorem, tells us that f attains a minimum value somewhere in [a, b], and
since there exists z € (a,b) such that f(x) < f (a) = f (b), this minimal value doesn’t occur at the
endpoints a or b. Thus, there must be a local minimum inside (a,b), say at the point = ¢. But
then since x = ¢ is a local minimum of f, we have f’ (c¢) = 0.

EXAMPLE 22.2. Prove that x® + 2 — 1 has exactly one real root.

e First we show that 22 + 2 — 1 has at least one real root. To see this, we note f (z) = 2% + 2 — 1 is
continuous and

f) = -1
f =1
By the Intermediate Value Theorem, we know that since 0 lies between f (0) and f (1), somewhere

in the inteval (0, 1) there’s a number ¢ such that f (¢) = 0. That number ¢ will of course also satisfy
AS4+c—1=0.
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Now suppose we had two numbers ¢; and ¢y such that f(¢;) = 0. Then Rolle’s Theorem tells
us that there is a point d between ¢; an ¢y such that f/ (d) = 0. However,

fl(x)=32"+1>1 for all x

We conclude that we cannot have two such roots ¢; and ¢y without contradicting Rolle’s Theorem.
So the statement is proved.

THEOREM 22.3 (The Mean Value Theorem). Let f be a function that satisfies

e [ is continuous on the closed interval [a, b
o f is differentiable on the open interval (a,b)

Then there is a number ¢ € (a,b) such that

vy f )= f(a)
7=
Proof.
Consider the function
f () = f(a)

h(@)=f @)~ f (@) - L2 @ —a)

(This happens to be the function that measures that measures the vertical distance between the graph of
(z) and the secant line through (a, f (a)) and (b, f (b)).) Since f is continuous and differentiable and since

g) = L0, )
is continuous and differentiable, so will be h (z) = f (x) + g (z). We also have
h@) = - f- L0 g~

f(b) = f(a)

hb) = f)=fla)-————(-a)=0

So we can apply Rolle’s Theorem to conclude that somewhere between © = a and © = b there is a point
x = ¢ where I/ (¢) = 0. But then

0= = (1w - LO=L)

r=c

Hence there is a point ¢ € (a,b) where
—a
COROLLARY 22.4. Suppose f' (x) = 0 for all x in an interval [a,b], then f(x) is a constant function on

(a,b).

Proof. Let 1, x2 be any two points inside the interval [a, b] chosen so that a < z; < 22 < b. By the Mean
Value Theorem we know that there exists ¢ € (1, z2) so that

f' (c) = f(l’z) - f(l’l)

T — X1
But f/ (x) = 0 everywhere in [a, b]. Hence,

o L) = f@)

T2 — I1

= f(22) = f(21)

for all points 1,22 € (a,b). We conclude that f is constant on (a, b).
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ExXaMPLE 22.5. Prove the identity

tan~! (x) 4+ cot ™! (z) = g

Set
f(x) =tan™! (z) + cot™* (2)
Using the identities

d 1 1
e tan™" (z) = 722
d . B 1
T cot™ (x) = T2
we find
f (@)= — S—

T 1422 1422
Therefore, by the Corollary above, f (z) must be a constant.
tan~! (z) + cot™! (z) = C

To figure out the constant we can put z = 1. Now when

1=tan(f) = (S;I; ((g)) = 0 =45° ~ 7/4 radians
so tan~! (1) = 7 /4. Similarly,
B _cos(0) o .
1=cot(§) = S0 (0) = 0 =45° ~ 7/4 radians
Hence,
— tan~! Sty =X, T_T
C =tan"" (1) + cot (1)—4-1-4 5

Thus, the constant C is /2. The stated identity now follows.



