Braids, links and cluster algebras

José Simental MPIM Bonn (joint work with Roger Casals, Eugene Gorsky, Mikhail Gorsky, Ian Le and Linhui Shen)

> Lie Theory Seminar Oklahoma State University

> > April 20, 2022

Plan

Cluster algebras

- Mutations
- ▶ The Laurent phenomenon
- Cluster varieties
- ② Braid varieties
 - Braid varieties via flag moduli
 - Braid varieties via braid matrices
 - Examples
- Algebraic weaves
 - Opening crossings
 - Weaves and tori
 - Inductive torus
 - ▶ *s*-variables and cluster variables

I. Cluster algebras

æ

< ∃⇒

3 ×

Cluster algebras

Cluster algebras were defined by Fomin and Zelevinsky around the year 2000. A cluster algebra \mathcal{A} is a subalgebra of the field $\mathbb{C}(x_1, \ldots, x_n, y_1, \ldots, y_m)$ of rational functions in n + m-variables, generated by a collection of sets of cardinality n + m called **clusters**. All clusters contain the variables y_1, \ldots, y_m (called **frozen variables**) and, starting from the **initial cluster**

$$\mathbf{x} := \{x_1, \dots, x_n, y_1, \dots, y_m\}$$

one may reach all other clusters by iterating a combinatorial rule called **mutation**. The mutation is encoded by a **quiver** with n **mutable vertices** and m **frozen vertices**, and one is allowed to mutate only at the mutable vertices.

Mutation

Consider the initial cluster $\mathbf{x} = \{x_1, \dots, x_n, y_1, \dots, y_m\}$ and a quiver Q with m + n vertices, numbered $1, \dots, n + m$. The vertices $n + 1, \dots, n + m$ are frozen. For $k = 1, \dots, n$, the mutation of the pair (\mathbf{x}, Q) is another pair $(\mu_k(\mathbf{x}), \mu_k(Q))$ constructed as follows:

• $\mu_k(\mathbf{x}) = (\mathbf{x} \setminus \{x_k\}) \cup \{x'_k\}$ where

$$x_k x'_k = \prod_{x \to x_k} x + \prod_{x_k \to x} x$$

- $\mu_k(Q)$ is obtained by following the 3-step procedure:
 - Reversing all the arrows incident with k.
 - For each path $i \to k \to j$ in Q, add a new arrow $i \to j$.
 - The previous steps may have created arrows between frozens, as well as two-cycles. Delete these.

Examples

The Laurent Phenomenon

$$A \subseteq \bigcap_{\widetilde{X}} \mathbb{C}[\widetilde{X}^{\sharp'}]$$

Theorem (The Laurent Phenomenon, Fomin-Zelevinsky 2000)

Let \mathcal{A} be a cluster algebra, and let $\tilde{\mathbf{x}}$ be any cluster (not necessarily the initial one). Then, $\mathcal{A} \subseteq \mathbb{C}[\tilde{\mathbf{x}}^{\pm 1}].$

Mutation may get incredibly complicated, but we can always cancel
things so that the end-result is a *Laurent* polynomial! Observe that we
have
$$\tilde{\mathbf{x}} \subseteq \mathcal{A}$$
 so localizing we get an equality:
 $\mathcal{A}[\tilde{\mathbf{x}}^{\pm 1}] = \mathbb{C}[\tilde{\mathbf{x}}^{\pm 1}]$
 $\chi \supseteq \{ \widetilde{\mathbf{x}}_i \neq \mathbf{o} \notin \widetilde{\mathbf{x}}_i \in \widetilde{\mathbf{x}} \} \cong (\mathbb{C}^*)^{\mathsf{minf}}$
A Cluster for

Cluster varieties

Definition

Let X be an affine algebraic variety. We say that X is a **cluster variety** if there exists a cluster algebra \mathcal{A} such that

$$X = \operatorname{Spec}(\mathcal{A}).$$

Examples of cluster varieties include:

- The basic affine space G/U (Fomin-Zelevinsky).
- $\bullet\,$ The affine cone over the Grassmannian ${\rm Gr}(k,n)$ (Scott, Postnikov, Oh, Speyer...)
- The affine cone over parabolic flag varieties (Geiss-Leclerc-Schroer)
- Double Bruhat cells (Berenstein-Fomin-Zelevinsky)
- Positroid varieties (Galashin-Lam, Serhiyenko-Sherman-Bennett-Williams)

(4月) キョン イヨン

Why?

Why would we like to have a cluster structure on an affine variety X?

- Notions of <u>positive</u> part of X (Fomin-Zelevinsky, Schiffler-Lee, Gross-Hacking-Keel-Kontsevich)
- (In nice cases) An explicit basis of $\mathbb{C}[X]$ (Gross-Hacking-Keel-Kontsevich)
- (In nice cases) Mirror symmetry for X (Fock-Goncharov, Gross-Hacking-Keel-Kontsevich)
- (In nice cases) Information about the cohomology of X.

Theorem (Lam-Speyer)

For nice enough \underline{Q} , the cluster variety X is a smooth affine algebraic variety. Moreover, the mixed Hodge structure on the cohomology $H^*(X, \mathbb{Q})$ is of <u>mixed Tate type</u>, and it is split over \mathbb{Q} (in particular, it is a direct sum of pure Hodge structures).

- 3

イロト イボト イヨト イヨト

II. Braid varieties (type A)

José Simental (MPIM)

Braids, links, clusters

April 20, 2022

10/37

ъ

The symmetric group

Fix n > 0. We recall the Coxeter presentation of the symmetric group.

Definition

The symmetric group S_n is the group with generators s_i , i = 1, ..., n-1 and relations n = 1 and relations n = 1 (i, i+1)

•
$$s_i s_j = s_j s_i$$
 if $|i - j| > 1$,
• $s_i^2 = 1$.

In terms of the usual definition of the symmetric group, $s_i = (i, i + 1)$.

Definition

The *length* of an element $w \in S_n$ is the minimum number of s_i 's we need to write w. Equivalently,

$$\ell(w) = \{(\underbrace{i,j}) | 1 \leq i < j \leq n, w(j) < w(i)\}$$

Note that S_n has a unique element of maximal length, that we denote by $w_0 := \text{In}, n-1, \dots, 2, 1$

Positive braid monoid

$$\overline{J}_{L} = \int_{L}^{A} \int_{L}^{2} \cdot \frac{v^{2}}{v} \int_{L}^{$$

Fix n > 0.

Definition

The positive braid monoid B_n^+ is the group with generators σ_i , $i = 1, \ldots, n-1$ and relations

•
$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 if $|i - j| > 1$, $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$.

We will call elements of B_n^+ positive braids.

We have a surjection $\varpi: B_n^+ \to S_n$, given by $\sigma_i \mapsto s_i$.

Definition

The length of an element $\beta \in B_n^+$ is the minimum number of σ_i 's we need to write it. If $w \in S_n$, we denote by $\beta(w) \in B_n$ its unique lift of minimal length. Note that $\ell(w) = \ell(\beta(w))$.

イロト 不得 とくほと 不良 とうほ

Demazure products $S(\sigma_1 \sigma_2 \sigma_2) = S_1 S_2$ 1 1 1

Let $\beta = \sigma_{i_1} \cdots \sigma_{i_\ell} \in \operatorname{Br}_n^+$ be a *positive* braid in *n* strands. The *Demazure* (aka *greedy*, aka *0-Hecke*) product of β , $\delta(\beta) \in S_n$ is defined inductively on $\ell = \ell(\beta)$ as follows:

$$\delta(1) = 1 \in S_n$$
$$\delta(\beta\sigma_i) = \begin{cases} \delta(\beta)s_i & \text{if } (\beta) < (\beta)s_i \\ \delta(\beta) & \text{else.} \end{cases}$$

It is easy to check that this does not depend on the chosen braid word of β .

Example

 $\underline{\delta(\beta)} = w_0$ if and only if β contains $\beta(w_0)$ as a (not necessarily consecutive!) subword.

イロト イポト イヨト イヨト

The flag variety
$$F^{I} = 0 \leq \langle e_i \rangle \leq \langle e_i \rangle \leq \dots \leq G^{n}$$

std blogd F^{G} Fupper trong notion

We will consider the flag variety

$$\mathcal{F}_n := \{ F_{\bullet} = (0 = F_0 \subseteq F_1 \subseteq \dots \subseteq F_n = \mathbb{C}^n) \mid \dim F_i = i \}$$

If $A \in \operatorname{GL}_n$, we denote by F^A the flag

 $F_i^A := \operatorname{span}\{\operatorname{first} i \operatorname{columns} \operatorname{of} A\}$

This gives us the usual identification $\mathcal{F}_n = \operatorname{GL}_n / B$. Note that we also get a natural action of S_n on \mathcal{F}_n .

Definition

The standard flag is
$$F^{\text{std}} = F^I$$
. If $w \in S_n$, we have $F^{\omega} \in \mathcal{F}_n$.

A (1) > A (2) > A (2) >

Brick varieties

$$F^{std} \xrightarrow{f} \xrightarrow{f} \xrightarrow{f} \xrightarrow{f} \xrightarrow{f} \xrightarrow{f} F^{st(p)}$$

Definition Let $\beta = \sigma_{i_1} \cdots \sigma_{i_\ell} \in \operatorname{Br}_n^+$. We define the *open brick variety* to be the subvariety brick $(\beta) \subseteq \mathcal{F}\ell_n^{\ell+1}$ consisting of tuples $(\mathcal{F}^0, \dots, \mathcal{F}^\ell)$ satisfying: • $\mathcal{F}^0 = \mathcal{F}^{std}$. • $\mathcal{F}_{i_{j+1}}^j \neq \mathcal{F}_{i_{j+1}}^{j+1}, \ \mathcal{F}_i^j = \mathcal{F}_i^{j+1} \text{ for } i \neq i_{j+1}$. • $\mathcal{F}^\ell = \delta \mathcal{F}^{std}$.

Remark

The (closed) brick variety is defined by relaxing the condition that two consecutive flags *must* differ: they are allowed to be the same. Note that $brick^{\circ}(\beta)$ does not depend on the chosen braid word of β , but $brick(\beta)$ may.

15/37

・ロト ・回ト ・ヨト

Braid varieties

For i = 1, ..., n - 1 and $z \in \mathbb{C}$, we denote by $B_i(z)$ the matrix that is the identity everywhere except at the *i* and *i* + 1-st row and columns, where it is the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & z \\ \mathbf{\dot{i}} & \mathbf{\dot{i}} \end{pmatrix} \cdot \mathbf{\dot{i}}$$

Definition

Let $\underline{\beta} \in \operatorname{Br}_n^+$ be a positive braid with Demazure product $\underline{\delta}$. We define the braid variety $X(\beta) \subseteq \mathbb{C}^{\ell}$ to be:

$$X(\beta) := \{\underbrace{(z_1, \dots, z_\ell) \in \mathbb{C}^\ell \mid B_{i_1}(z_1) \cdots B_{i_\ell}(z_\ell) \delta^{-1} \text{ is upper triangular} \}}_{\text{Variabing, of (?) four two}}$$

Open Brick varieties = satisfies biard

Note that, if $B \in \operatorname{GL}_n$, then the flags that differ from F^{B}_{i} at precisely the *i*-th subspace are precisely those of the form $F^{BB_i^{-1}(z)}$ for $z \in \mathbb{C}$.

Lemma

$$X(\sigma_{i_1}\cdots\sigma_{i_\ell})\cong \operatorname{brick}^{\circ}(\sigma_{i_\ell}\cdots\sigma_{i_1})$$

Remark

- The variety $\underline{X}(\beta)$ does not depend on the braid word chosen for β . Actually, $\underline{B_i(z_1)}B_{i+1}(z_2)B_i(z_3) = B_{i+1}(z_3)B_i(z_2 - z_1z_3)B_{i+1}(z_1)$.
- If $\beta = \beta(w)$ for some $w \in S_n$, then $X(\beta) = \text{pt.}$
- From now on, we will assume that $\delta(\beta) = w_0$. Indeed, it is easy to see that $X(\beta) \cong X(\beta \cdot \beta(\delta^{-1}w_0))$.

3 × 4 3 ×

Example: 2-stranded braids

۵...۵)

(۱) کور

Let us consider the braid $\sigma^4 \in B_2^+$. We have

$$\begin{aligned}
\mathbf{W}_{a} = \begin{pmatrix} 0 & 1 \\ 1 & z_{1} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & z_{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & z_{3} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & z_{4} \end{pmatrix} \mathbf{W} \\
\mathbf{z}_{a}^{\dagger} \mathbf{z}_{b}^{\dagger} \mathbf{z}_{a}^{\dagger} \mathbf{z}_{b}^{\dagger} \mathbf{z}_{a}^{\dagger} \mathbf{z}_{a}^{\dagger$$

Braids, links, clusters

Open Richardson varieties

Let $u, v \in S_n$ with $u \leq v$. The open Richardson variety $R^{\circ}(u, v)$ is the intersection of the open Schubert cell $C_v^{\circ} \subseteq \mathcal{F}_n$ with the opposite open Schubert cell $C_o^u \subseteq \mathcal{F}_n$,

 $R(u,v) = C_v^{\circ} \cap C_o^u.$ Let us denote by $\beta(v) \in B_n^+$ a positive lift of minimal length, and similarly for $\beta(u^{-1}w_0)$.

Proposition (Casals-Gorsky-Gorsky-S.) We have

$$R^{\circ}(u,v) \cong X(\beta(v)\beta(u^{-1}w_0))$$

The isomorphism simply sends an element $(z_1, \ldots, z_{\ell}) \in X(\beta)$ to the flag $F^{B_{\beta(v)}^{-1}(z_1, \ldots, z_{\ell(v)})}$.

イロト イボト イヨト イヨト 一日

Properties of braid varieties

Remark

Both of these theorems are still valid when G is an algebraic group of simply laced type.

III. Algebraic Weaves

3.1

2

Algebraic Weaves, I

To study the varieties $X(\beta)$ we define correspondences between them that can be encoded by a graphical calculus that we call *algebraic weaves.* $(2)^{(1)}$

Algebraic weaves
$$\mathbf{z} \mathbf{+}^{\mathbf{D}}$$
 $\mathbf{R}(\mathbf{z}) \mathbf{B}_{i}(\mathbf{w})$
 $\mathbf{U}_{i}(\mathbf{z}) \mathbf{L}_{i}(\mathbf{z}) \mathbf{B}_{i}(\mathbf{w}) = \mathbf{U}_{i}(\mathbf{z}) \mathbf{B}_{i}(\mathbf{w}) \mathbf{z}^{i}$

• If U is an upper triangular matrix and $z \in \mathbb{C}$, then we can find $z' \in \mathbb{C}$ and U' another upper triangular matrix such that

$$B_i(z)U = U'B_i(z')$$

Colloquially, we can "slide upper triangular matrices to the left, at the cost of a change of variables."

• If $z \neq 0$ then we can factor $B_i(z)$ as $U_i(z)L_i(z)$ where

$$U_i(z) = \begin{pmatrix} -z^{-1} & 1\\ 0 & z \end{pmatrix}, \qquad L_i(z) = \begin{pmatrix} 1 & 0\\ z^{-1} & 1 \end{pmatrix}$$

Moreover

$$L_i(z)B_i(w) = B_i(w+z^{-1}).$$

José Simental (MPIM)

Algebraic weaves

• Furthermore,
$$\underbrace{B_i(0)B_i(w)}_{i}=\begin{pmatrix} 1 & w\\ 0 & 1 \end{pmatrix}$$
.

More precisely, we have:

Lemma

Let $\beta = \beta_1 \sigma_i \sigma_i \beta_2$, and let z, w be the variables corresponding to the first and second σ_i in the middle pair, respectively. Then, $w \cdot z^{-1}$

• The locus
$$\{z \neq 0\}$$
 in $X(\beta)$ is isomorphic to $\mathbb{C}_z^{\times} \times X(\beta_1 \sigma_i \beta_2)$

• The locus
$$\{z = 0\}$$
 in $X(\beta)$ is nonempty if and only if $\delta(\beta) = \delta(\beta_1\beta_2)$. In this case, the locus is isomorphic to $\mathbb{C}_w \times X(\beta_1\beta_2)$.

Weaves and tori

We denote $\mathfrak{w} : \beta_1 \to \beta_2$ a weave whose colors all the way north read β_1 and all the way south read β_2 . If $\delta(\beta_1) = \delta(\beta_2)$, a weave $\mathfrak{w} : \beta_1 \to \beta_2$ defines a locally closed set in $X(\beta_1)$, isomorphic to

$$(\mathbb{C}^{\times})^{\text{\#trivalent vertices}} \times \mathbb{C}^{\text{\#cups}} \times X(\beta_2)$$

In particular,

Remark

A weave without cups $\mathfrak{w} : \beta \to \delta(\beta)$ defines an open torus in $X(\beta)$, isomorphic to $(\mathbb{C}^{\times})^{\ell(\beta)-\ell(\delta(\beta))}$.

Sometimes two different weaves give the same open torus...

(人間) とうき くうり

Relations

<ロ> (四) (四) (三) (三) (三) (三)

Relations

April 20, 2022

メロト メタト メヨト メヨト

28 / 37

æ

Mutations

April 20, 2022

29/37

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Example

$\beta = \nabla^{4} \in \mathcal{B}_{2}$ $z_{1} z_{2} z_{3} z_{4}$	Torus with coordinates
z	$S_1 = Z_1, S_2 = Z_2 + Z_1^{-1}$
$Z_2 + Z_1^{-1}$ $Z_3 + (Z_2 + Z_1^{-1})^{-1}$	$S_3 = Z_3 + (Z_2 + Z_1^{-1})^{-1}$ Not replar functional!!
2 ¹ =3' 2'2 ⁷ =	$\int r S_1 S_2 S_1 S_2 S_2 = S_1 + S_2 r S_1 S_1 S_2 S_3$
Z1	$z_{1} \longrightarrow \left[-S^{1} - S^{2} - S^{2} S^{2} \right]$
(-1 - 2, 3, 1) = 2,	$x = \frac{1}{2} + $

José Simental (MPIM)

Braids, links, clusters

April 20, 2022 30 / 37

Inductive weaves

Let $\beta \in \operatorname{Br}_n^+$. We define the inductive weave of β , $\mathfrak{w}(\beta) : \beta \to \delta(\beta)$ as follows:

- $\mathfrak{w}(1)$ is the empty weave.
- If $\delta(\beta\sigma_i) = \delta(\beta)s_i$, then $\mathfrak{w}(\beta\sigma_i)$ is $\mathfrak{w}(\beta)$ with a disjoint *i*-colored strand to its right.
- If $\delta(\beta \sigma_i) = \delta(\beta)$, then $\mathfrak{w}(\beta \sigma_i)$ is $\mathfrak{w}(\beta)$ followed by an *i*-colored 3-valent vertex.

Cycles in $\mathfrak{w}(\beta)$

We define a collection of cycles (= paths in the weave) in $\mathfrak{w}(\beta)$ as follows. For every 3-valent vertex of $\mathfrak{w}(\beta)$:

- Start from the 3-valent vertex and go down.
- If we approach a hexavalent vertex from the left or right, go through.
- If we approach a hexavalent vertex from the middle, branch.
- If we hit another trivalent vertex, stop.

We say that such a cycle is *unbounded* if it falls all the way down the weave.

Intersection quiver

We form a quiver from the weave $\mathfrak{w}(\beta)$ as follows.

- Vertices = cycles in the weave = trivalent vertices in the weave.
 - ▶ Frozen vertices = unbounded cycles.
 - ▶ Mutable vertices = bounded cycles.
- Arrows: Given by the following rules (we may need to delete 2-cycles afterwards):

Cluster variables

Now we define a basis of the torus given by the inductive weave, by performing an upper-triangular change of basis from the *s*-basis. Let v be a trivalent vertex in $\mathfrak{w}(\beta)$. We say that another trivalent vertex v' covers v if the cycle starting at v' touches v. Then define inductively:

$$c_v = \pm s_v \prod_{v' \text{ covers } v} c_{v'}.$$

Lemma (Casals-Gorsky-Gorsky-Le-Shen-S. '22)

The functions c_v are regular functions on $X(\beta)$. If v is such that the cycle starting at v is unbounded, then c_v is nowhere vanishing on $X(\beta)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (Casals-Gorsky-Gorsky-Le-Shen-S. '22)

Let β be any positive braid. Then $X(\beta)$ is a cluster variety, with the torus given by $\mathfrak{w}(\beta)$ being a cluster torus. The quiver and cluster variables for the initial seed are given as above, with frozen variables corresponding to unbounded cycles.

Remarks

- Note that $\mathfrak{w}(\beta)$ depends on the braid word for β and not just on β . Different braid words of β give potentially different tori in the same cluster structure, and the quivers Q, Q' are mutation equivalent.
- It would be great to give a similar procedure for *any* weave.
- Related work by B. Hwang-A. Knutson.

イロト イヨト イヨト

Thanks for your attention!

A B +
 A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ъ