Braids, links and cluster algebras

José Simental
MPIM Bonn
(joint work with Roger Casals, Eugene Gorsky, Mikhail Gorsky, Ian Le and Linhui Shen)

Lie Theory Seminar

Oklahoma State University

April 20, 2022

Plan

(1) Cluster algebras

- Mutations
- The Laurent phenomenon
- Cluster varieties
(2) Braid varieties
- Braid varieties via flag moduli
- Braid varieties via braid matrices
- Examples
(3) Algebraic weaves
- Opening crossings
- Weaves and tori
- Inductive torus
- s-variables and cluster variables

I. Cluster algebras

Cluster algebras

Cluster algebras were defined by Fomin and Zelevinsky around the year 2000. A cluster algebra \mathcal{A} is a subalgebra of the field $\mathbb{C}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ of rational functions in $n+m$-variables, generated by a collection of sets of cardinality $n+m$ called clusters. All clusters contain the variables y_{1}, \ldots, y_{m} (called frozen variables) and, starting from the initial cluster

$$
\mathbf{x}:=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\}
$$

one may reach all other clusters by iterating a combinatorial rule called mutation. The mutation is encoded by a quiver with n mutable vertices and m frozen vertices, and one is allowed to mutate only at the mutable vertices.

Mutation

Consider the initial cluster $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\}$ and a quiver Q with $m+n$ vertices, numbered $1, \ldots, n+m$. The vertices $n+1, \ldots, n+m$ are frozen. For $k=1, \ldots, n$, the mutation of the pair (\mathbf{x}, Q) is another pair $\left(\mu_{k}(\mathbf{x}), \mu_{k}(Q)\right)$ constructed as follows:

- $\mu_{k}(\mathbf{x})=\left(\mathbf{x} \backslash\left\{x_{k}\right\}\right) \cup\left\{x_{k}^{\prime}\right\}$ where

$$
x_{k} x_{k}^{\prime}=\prod_{x \rightarrow x_{k}} x+\prod_{x_{k} \rightarrow x} x
$$

- $\mu_{k}(Q)$ is obtained by following the 3-step procedure:
- Reversing all the arrows incident with k.
- For each path $i \rightarrow k \rightarrow j$ in Q, add a new arrow $i \rightarrow j$.
- The previous steps may have created arrows between frozens, as well as two-cycles. Delete these.

Examples

The Laurent Phenomenon

$$
A \subseteq \bigcap_{\tilde{x} \text { dusters }} \mathbb{C}\left[\tilde{x}^{\text {I' }}\right]
$$

Theorem (The Laurent Phenomenon, Fomin-Zelevinsky 2000)

Let \mathcal{A} be a cluster algebra, and let $\tilde{\mathbf{x}}$ be any cluster (not necessarily the initial one). Then,

$$
\mathcal{A} \subseteq \mathbb{C}\left[\tilde{\mathbf{x}}^{ \pm 1}\right]
$$

Mutation may get incredibly complicated, but we can always cancel things so that the end-result is a Laurent polynomial! Observe that we have $\tilde{\mathbf{x}} \subseteq \mathcal{A}$ so localizing we get an equality:

$$
\mathcal{A}\left[\tilde{\mathbf{x}}^{ \pm 1}\right]=\mathbb{C}\left[\tilde{\mathbf{x}}^{ \pm 1}\right]
$$

$\left.X \supseteq\left\{\tilde{x}_{i} \neq 0 \quad f \tilde{x}_{i} \in \tilde{X}\right\} \cong\left(\mathbb{C}^{x}\right)^{n+m}\right\}$ A Cluster ton

Cluster varieties

Definition

Let X be an affine algebraic variety. We say that X is a cluster variety if there exists a cluster algebra \mathcal{A} such that

$$
X=\operatorname{Spec}(\mathcal{A})
$$

Examples of cluster varieties include:

- The basic affine space G / U (Fomin-Zelevinsky).
- The affine cone over the Grassmannian $\operatorname{Gr}(k, n)$ (Scott, Postnikov, Oh, Speyer...)
- The affine cone over parabolic flag varieties (Geiss-Leclerc-Schroer)
- Double Bruhat cells (Berenstein-Fomin-Zelevinsky)
- Positroid varieties (Galashin-Lam, Serhiyenko-Sherman-Bennett-Williams)

Why?

Why would we like to have a cluster structure on an affine variety X ?

- Notions of positive part of X (Fomin-Zelevinsky, Schiffler-Lee, Gross-Hacking-Keel-Kontsevich)
- (In nice cases) An explicit basis of $\mathbb{C}[X]$ (Gross-Hacking-Keel-Kontsevich)
- (In nice cases) Mirror symmetry for X (Fock-Goncharov, Gross-Hacking-Keel-Kontsevich)
- (In nice cases) Information about the cohomology of X.

Theorem (Lam-Speyer)

For nice enough \underline{Q}, the cluster variety X is a smooth affine algebraic variety. Moreover, the mixed Hodge structure on the cohomology $H^{*}(X, \mathbb{Q})$ is of mixed Tate type, and it is split over \mathbb{Q} (in particular, it is a direct sum of pure Hodge structures).

II. Braid varieties (type A)

The symmetric group

Fix $n>0$. We recall the Coxeter presentation of the symmetric group.

Definition

The symmetric group S_{n} is the group with generators $s_{i}, i=1, \ldots$,

- $s_{i} s_{j}=s_{j} s_{i}$ if $|i-j|>1>s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$.
- $s_{i}^{2}=1$.

In terms of the usual definition of the symmetric group, $s_{i}=(i, i+1)$.

Definition

The length of an element $w \in S_{n}$ is the minimum number of s_{i} 's we need to write w. Equivalently,

$$
\ell(w)=\{(i, j) \mid 1 \leq i<j \leq n, w(j)<w(i)\}
$$

Note that S_{n} has a unique element of maximal length, that we denote by $w_{0}=[n, n-1, \ldots, 2,1)$

Positive braid monoid

Fix $n>0$.

$$
\sigma_{i}=\left.\int_{2}^{1}\right|_{2} ^{2} \cdot i_{i+1}^{i}
$$

Definition

The positive braid monoid B_{n}^{+}is the group with generators σ_{i}, $i=1, \ldots, n-1$ and relations

- $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $|i-j|>1, \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

We will call elements of B_{n}^{+}positive braids.
We have a surjection $\varpi: B_{n}^{+} \rightarrow S_{n}$, given by $\sigma_{i} \mapsto s_{i}$.

Definition

The length of an element $\beta \in B_{n}^{+}$is the minimum number of σ_{i} 's we need to write it. If $w \in S_{n}$, we denote by $\beta(w) \in B_{n}$ its unique lift of minimal length. Note that $\ell(w)=\ell(\beta(w))$.

Demazure products $\quad \delta\left(\sigma_{1} \sigma_{1} \sigma_{2} \sigma_{2}\right)=s_{1} s_{2}$ 111

Let $\beta=\sigma_{i_{1}} \cdots \sigma_{i_{\ell}} \in \operatorname{Br}_{n}^{+}$be a positive braid in n strands. The Demazure (aka greedy, aka 0 -Hecke) product of $\beta, \delta(\beta) \in S_{n}$ is defined inductively on $\ell=\ell(\beta)$ as follows:

$$
\begin{gathered}
\delta(1)=1 \in S_{n} \\
\delta\left(\beta \sigma_{i}\right)= \begin{cases}\delta(\beta) s_{i} & \text { if }(k)(\beta)<\left(\hat{l}(\beta) s_{i}\right) \\
\delta(\beta) & \text { else. }\end{cases}
\end{gathered}
$$

It is easy to check that this does not depend on the chosen braid word of β.

Example

$\delta(\beta)=w_{0}$ if and only if β contains $\beta\left(w_{0}\right)$ as a (not necessarily consecutive!) subword.

The flag variety

$$
\begin{aligned}
& \text { std } \log \left(\frac{F^{\prime \prime}}{F^{\circ}}=0 \subseteq\left\langle e_{1}\right\rangle \subseteq\left\langle e_{1}, e_{1}\right.\right.
\end{aligned}
$$

We will consider the flag variety

$$
\mathcal{F}_{n}:=\left\{F_{\bullet}=\left(0=F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{n}=\mathbb{C}^{n}\right) \mid \operatorname{dim} F_{i}=i\right\}
$$

If $A \in \mathrm{GL}_{n}$, we denote by F^{A} the flag

$$
F_{i}^{A}:=\operatorname{span}\{\text { first } i \text { columns of } A\}
$$

This gives us the usual identification $\mathcal{F}_{n}=\mathrm{GL}_{n} / B$. Note that we also get a natural action of S_{n} on \mathcal{F}_{n}.

Definition

The standard flag is $F^{\text {std }}=F^{I}$. If $w \in S_{n}$, we have $\mathcal{F}^{\boldsymbol{\omega}} \in \mathcal{F}_{n}$.

Brick varieties

$\rightarrow \underset{\sigma_{1}}{\rightarrow} \rightarrow \prod_{2}^{1}$

$\rightarrow F^{\delta()}$
 σ.

Remark

The (closed) brick variety is defined by relaxing the condition that two consecutive flags must differ: they are allowed to be the same. Note that brick $^{\circ}(\beta)$ does not depend on the chosen braid word of β, but $\operatorname{brick}(\beta)$ may.

Braid varieties

For $i=1, \ldots, n-1$ and $z \in \mathbb{C}$, we denote by $B_{i}(z)$ the matrix that is the identity everywhere except at the i and $i+1$-st row and columns, where it is the matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & z
\end{array}\right)_{i+1}^{i} \cdot \frac{i}{i+1}
$$

Definition

Let $\underline{\beta} \in \mathrm{Br}_{n}^{+}$be a positive braid with Demazure product δ. We define the braid variety $X(\beta) \subseteq \mathbb{C}^{\ell}$ to be:

$$
\downarrow
$$

$$
X(\beta):=\left\{\left(z_{1}, \ldots, z_{\ell}\right) \in \mathbb{C}^{\ell} \mid B_{i_{1}}\left(z_{1}\right) \cdots B_{i_{\ell}}\left(z_{\ell}\right) \delta^{-1} \text { is upper triangular }\right\}
$$

vanishing of $\binom{n}{2}$ equation

Braid varieties = ฉэi̇өísv ฟәітЯ пэqО

Note that, if $B \in \mathrm{GL}_{n}$, then the flags that differ from $\left({ }_{F^{B}}{ }^{B}\right.$ at precisely the i-th subspace are precisely those of the form $F^{B B_{i}^{-1}(z)}$ for $z \in \mathbb{C}$.

Lemma

$$
X(\underbrace{\sigma_{i_{1}} \cdots \sigma_{i_{\ell}}}) \cong \operatorname{brick}^{\circ}\left(\sigma^{\sigma_{i_{\ell}} \cdots \sigma_{i_{1}}}\right)
$$

Remark

- The variety $\underbrace{X(\beta)}$ does not depend on the braid word chosen for β. Actually, $\underline{B}_{i}\left(z_{1}\right) B_{\underline{i+1}}\left(z_{2}\right) \underbrace{}_{i}\left(z_{3}\right)=B_{i+1}\left(z_{3}\right) B_{i}\left(z_{2}-z_{1} z_{3}\right) B_{i+1}\left(z_{1}\right)$.
- If $\beta=\beta(w)$ for some $w \in S_{n}$, then $X(\beta)=\mathrm{pt}$.
- From now on, we will assume that $\delta(\beta)=w_{0}$. Indeed, it is easy to see that $X(\beta) \cong X\left(\beta \cdot \beta\left(\delta^{-1} w_{0}\right)\right)$.

Example: 2-stranded braids
Let us consider the braid $\sigma^{4} \in B_{2}^{+}$. We have

$$
\begin{aligned}
W_{\sigma^{4}}\left(z_{1}, \ldots, z_{4}\right) & =\left(\begin{array}{cc}
0 & 1 \\
1 & z_{1}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & z_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & z_{3}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & z_{4}
\end{array}\right) \mathrm{w} \\
z_{1}+z_{9}+z_{1} \varepsilon_{2} z_{3} \neq 0 & =\left(\begin{array}{cc}
1 & z_{2} \\
z_{1} & 1+z_{1} z_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & z_{3}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & z_{4}
\end{array}\right) \quad \omega \\
z_{4}=\frac{-1-z_{1} z_{2}}{z_{1}+z_{3}+z_{1} z_{2} z_{3}} & =\left(\begin{array}{cc}
z_{2} & 1+z_{2} z_{3} \\
1+z_{1} z_{2} & z_{1}+z_{3}+z_{1} z_{2} z_{3}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & z_{4}
\end{array}\right) \\
& =\left(\begin{array}{c}
1+z_{2} z_{3} \\
z_{1}+z_{3}+z_{1} z_{2} z_{3}
\end{array} \frac{1+z_{1}+z_{2} z_{3} z_{4}+z_{1} z_{4}+z_{3} z_{4}+z_{1} z_{2} z_{3} z_{4}}{1+z_{2}}\right.
\end{aligned}
$$

We can see that

$$
X\left(\sigma^{4}\right)=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3} \mid z_{1}+z_{3}+z_{1} z_{2} z_{3} \neq 0\right\}
$$

Open Richardson varieties

Let $u, v \in S_{n}$ with $u \leq v$. The open Richardson variety $R^{\circ}(u, v)$ is the intersection of the open Schubert cell $C_{v}^{\circ} \subseteq \mathcal{F}_{n}$ with the opposite open Schubert cell $C_{\circ}^{u} \subseteq \mathcal{F}_{n}$,

$$
R(u, v)=C_{v}^{\circ} \cap C_{\circ}^{u}
$$

Let us denote by $\mathcal{\beta (v)} \in B_{n}^{+}$a positive lift of minimal length, and similarly for $\beta\left(u^{-1} w_{0}\right)$.
Proposition (Casals-Gorsky-Gorsky-S.)
We have

$$
R^{\circ}(u, v) \cong X\left(\beta(v) \beta\left(u^{-1} w_{0}\right)\right)
$$

The isomorphism simply sends an element $\left(z_{1}, \ldots, z_{\ell}\right) \in X(\beta)$ to the flag $F^{B_{\beta(v)}^{-1}\left(z_{1}, \ldots, z_{\ell(v)}\right)}$.

Properties of braid varieties

\#vortabler

Theorem (Escobar, 2016)
The braid variety $X(\beta)$ is a smooth algebraic variety of dimension
見 $(\beta)-\ell(\delta(\beta))$. $\quad \delta(\beta)=\omega_{0} \quad l(\beta)-\binom{n}{2}$ a \#enation
Theorem (Casals-Gorsky-Gorsky-Le-Shen-S. 2022)
The braid variety $X(\beta)$ is a cluster variety.

Remark

Both of these theorems are still valid when G is an algebraic group of simply laced type.

III. Algebraic Weaves

Algebraic Weaves, I

To study the varieties $X(\beta)$ we define correspondences between them that can be encoded by a graphical calculus that we call algebraic weaves.

$B_{i}\left(z_{1}\right) B_{i+1}\left(z_{2}\right) B_{i}\left(z_{3}\right)=B_{i+1}\left(z_{3}\right) B_{i}\left(z_{2}-z_{1} z_{3}\right) B_{i+1}\left(z_{1}\right)$

$B_{i}(z) B_{j}(w)=B_{j}(w) B_{i}(z)$ if $|i-j|>1$.

Algebraic weaves $\quad \boldsymbol{z} \neq 0 \quad B_{i}(2) B_{i}(\omega)$
 $u_{i}(z) L_{i}(2) B_{i}(\omega)=u_{i}(z) B_{i}\left(\omega+z^{-1}\right)$

- If U is an upper triangular matrix and $z \in \mathbb{C}$, then we can find $\mathfrak{z} z^{\prime} \in \mathbb{C}$ and U^{\prime} another upper triangular matrix such that

$$
B_{i}(z) U=U^{\prime} B_{i}\left(z^{\prime}\right)
$$

Colloquially, we can "slide upper triangular matrices to the left, at the cost of a change of variables."
(- If $z \neq 0$ then we can factor $B_{i}(z)$ as $U_{i}(z) L_{i}(z)$ where

$$
U_{i}(z)=\left(\begin{array}{cc}
-z^{-1} & 1 \\
0 & z
\end{array}\right), \quad L_{i}(z)=\left(\begin{array}{cc}
1 & 0 \\
z^{-1} & 1
\end{array}\right)
$$

Moreover

$$
\underbrace{L_{i}(z) B_{i}(w)=B_{i}\left(w+z^{-1}\right) .}
$$

Algebraic weaves

- Furthermore, $\underbrace{B_{i}(0)} B_{i}(w)=\left(\begin{array}{cc}1 & w \\ 0 & 1\end{array}\right)$.

More precisely, we have:

Lemma

Let $\beta=\beta_{1} \sigma_{i} \underset{\sigma}{\boldsymbol{w}} \sigma_{i} \beta_{2}$, and let z, w be the variables corresponding to the first and secoñ $\dot{\sigma}^{-} \sigma_{i}$ in the middle pair, respectively. Then, $w+2^{-1}$
$\left\{^{-}\right.$The locus $\{z \neq 0\}$ in $X(\beta)$ is isomorphic to $\mathbb{C}_{z}^{\times} \times X\left(\beta_{1}\right.$

Basic algebraic weaves
?

$$
z=0
$$

Weaves and tori

We denote $\mathfrak{w}: \beta_{1} \rightarrow \beta_{2}$ a weave whose colors all the way north read β_{1} and all the way south read β_{2}. If $\delta\left(\beta_{1}\right)=\delta\left(\beta_{2}\right)$, a weave $\mathfrak{w}: \beta_{1} \rightarrow \beta_{2}$ defines a locally closed set in $X\left(\beta_{1}\right)$, isomorphic to

$$
\left(\mathbb{C}^{\times}\right)^{\# \text { trivalent vertices }} \times \mathbb{C}^{\# \text { cups }} \times X\left(\beta_{2}\right)
$$

In particular,

Remark

A weave without cups $\mathfrak{w}: \beta \rightarrow \delta(\beta)$ defines an open torus in $X(\beta)$, isomorphic to $\left(\mathbb{C}^{\times}\right)^{\ell(\beta)-\ell(\delta(\beta))}$.

Sometimes two different weaves give the same open torus...

Relations

Relations

Mutations

Example

Torus with coordinates

$$
\begin{aligned}
& s_{1}=z_{1}, \quad s_{2}=z_{2}+z_{1}^{-1} \\
& s_{3}=z_{3}+\left(z_{2}+z_{1}^{-1}\right)^{-1}
\end{aligned}
$$

Not regular functional)!!

$$
\begin{aligned}
& s_{1}=z_{1} \quad s_{1} s_{2}=1+z_{1} z_{2} \quad s_{1} s_{2} s_{2}=z_{1}+z_{3}, z_{1} z_{2} z_{3} \\
& z_{1} \longrightarrow-1-z_{1} z_{2} \longrightarrow \begin{array}{l}
\frac{-z_{1}-z_{3}-z_{1} z_{2} z_{2}}{} \\
\frac{-z_{1}-z_{2}-z_{1} z_{1} z_{2}+z_{1}}{-1-z_{1} z_{2}}=z_{3} \\
\frac{\left(-1-z_{1} z_{2}\right)+1}{z_{1}}=z_{2}
\end{array}
\end{aligned}
$$

Inductive weaves

Let $\beta \in \mathrm{Br}_{n}^{+}$. We define the inductive weave of $\beta, \mathfrak{w}(\beta): \beta \rightarrow \delta(\beta)$ as follows:

- $\mathfrak{w}(1)$ is the empty weave.
- If $\delta\left(\beta \sigma_{i}\right)=\delta(\beta) s_{i}$, then $\mathfrak{w}\left(\beta \sigma_{i}\right)$ is $\mathfrak{w}(\beta)$ with a disjoint i-colored strand to its right.
- If $\delta\left(\beta \sigma_{i}\right)=\delta(\beta)$, then $\mathfrak{w}\left(\beta \sigma_{i}\right)$ is $\mathfrak{w}(\beta)$ followed by an i-colored 3 -valent vertex.

Cycles in $\mathfrak{w}(\beta)$

We define a collection of cycles ($=$ paths in the weave) in $\mathfrak{w}(\beta)$ as follows. For every 3 -valent vertex of $\mathfrak{w}(\beta)$:

- Start from the 3 -valent vertex and go down.
- If we approach a hexavalent vertex from the left or right, go through.
- If we approach a hexavalent vertex from the middle, branch.
- If we hit another trivalent vertex, stop.

We say that such a cycle is unbounded if it falls all the way down the

Intersection quiver

We form a quiver from the weave $\mathfrak{w}(\beta)$ as follows.

- Vertices $=$ cycles in the weave $=$ trivalent vertices in the weave.
- Frozen vertices $=$ unbounded cycles.
- Mutable vertices = bounded cycles.
- Arrows: Given by the following rules (we may need to delete 2-cycles afterwards):

Cluster variables

Now we define a basis of the torus given by the inductive weave, by performing an upper-triangular change of basis from the s-basis. Let v be a trivalent vertex in $\mathfrak{w}(\beta)$. We say that another trivalent vertex v^{\prime} covers v if the cycle starting at v^{\prime} touches v. Then define inductively:

$$
c_{v}= \pm s_{v} \prod_{v^{\prime} \text { covers } v} c_{v^{\prime}}
$$

Lemma (Casals-Gorsky-Gorsky-Le-Shen-S. '22)

The functions c_{v} are regular functions on $X(\beta)$. If v is such that the cycle starting at v is unbounded, then c_{v} is nowhere vanishing on $X(\beta)$.

Theorem (Casals-Gorsky-Gorsky-Le-Shen-S. '22)

Let β be any positive braid. Then $X(\beta)$ is a cluster variety, with the torus given by $\mathfrak{w}(\beta)$ being a cluster torus. The quiver and cluster variables for the initial seed are given as above, with frozen variables corresponding to unbounded cycles.

Remarks

- Note that $\mathfrak{w}(\beta)$ depends on the braid word for β and not just on β. Different braid words of β give potentially different tori in the same cluster structure, and the quivers Q, Q^{\prime} are mutation equivalent.
- It would be great to give a similar procedure for any weave.
- Related work by B. Hwang-A. Knutson.

A large

Thanks for your attention!

