Loot time!
(1) Sleavo in X

$$
0 \leq x \leadsto F(u)
$$

(2) Čech chandogy:

$$
\ddot{H}^{x}\left(x_{1} F\right)
$$

Nhm: If $F=Q_{x}$ cmotat shef Hen $\check{H}^{\infty}\left(X, \mathbb{E}_{x}\right)=H_{*}\left(X, Q_{2}\right)$ usual homolisy

Quetrón: Is Ave a shat F in X

$$
H^{*}(X, F)=I H_{*}^{\bar{m}}(X) ?_{0}^{?}
$$

Algelara f sleano.

Shecres: Fi G sheave ar X.
(1) hanomarplawins: $F \xrightarrow{P} C$

$$
\begin{aligned}
& F(w) \stackrel{q(w)}{\longrightarrow} G(v) \\
& F(v) \xrightarrow{\downarrow} G(v) \\
& F(v)
\end{aligned}
$$

comuteo with reotrotion
$\rightarrow \phi_{x}: F_{x} \rightarrow G_{x}$ hom an statios
(2) $\operatorname{her} \ell(\omega):=\operatorname{ker}(\ell(w))$ is a shat
(3) in $\varphi(\omega):=$ in $(\varphi(u))^{+}$is a preshat
(9) $F \leqslant C$ subshef of $F(w) \leqslant c(u)$ is a shar.
(5) $C / /$ quónt sheq $^{\text {qu }} G(\omega)=C(u) /{ }_{F}{ }^{+}$ is prestat
(6) Lot $\beta: X \rightarrow Y$ cintivido map.

(a) $\$_{x} F \sim Y$ is a shat

$$
\phi^{x} F(u)=F\left(\phi^{-1}(u)\right)
$$

(b) $\* Go a X is a presteat

$$
\left.\phi^{x} \operatorname{Co}(u)=\operatorname{limi}_{\phi(\omega) \leqslant v_{j}} \operatorname{Cos} L V\right)^{t^{2}}
$$

AQjoint:

$$
\text { Hom } \operatorname{sh}(x)\left(\phi^{*} C_{n}, F\right) \simeq H_{m} \operatorname{sh}\left(T G, \phi_{x} F\right)
$$

Compdoxes of shaves:
A comples of shaves an X is a

$$
\begin{aligned}
& \text { segvene } F_{0}=\left(F_{i}\right)_{j \in z} \\
& \cdots \rightarrow F_{i-1} \rightarrow F_{i} \stackrel{2_{i}}{\rightarrow} F_{i+1} \rightarrow \cdots
\end{aligned}
$$

st. $\partial_{i+1} \cdot \theta_{i}=D \quad \forall i$
Dipar cinomasy
Gives F_{0} an X.
$\rightarrow C^{P}(X, F q) \quad$ Cech colurines

Two banduy operctus:

$$
\begin{aligned}
& C^{P}\left(x_{1} F_{a}\right) \xrightarrow{D_{2}} C^{p}\left(x_{1} F_{a+1}\right) \\
& d_{1} \downarrow \\
& C^{p+1}\left(x_{1} F_{a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& L^{t} k^{n}:=\underset{\substack{++=n}}{ } C^{p}\left(x_{1} F_{q}\right) \\
& \tilde{d}: k^{n} \rightarrow k^{n+1} \text { by } \tilde{\Omega}=\Omega_{1}+(-t)^{p} \delta_{2}
\end{aligned}
$$

ckin $\tilde{d}^{2}=D \quad\left(Q_{1} Q_{2}=Q_{2} Q_{1}\right)$
DRn: $\mathbb{H}^{n}\left(x, F_{0}\right):={ }^{h o r} \tilde{Q}_{n} / \min _{n-1}$
Pre: $F_{0}=\mathbb{E}_{x}[r]$

$$
\begin{array}{ll}
\cdots \rightarrow 0 \rightarrow 0 & \mathbb{Q}_{x} \rightarrow 0 \rightarrow 0 \cdots \\
-n
\end{array}
$$

Then:

$$
H^{*}\left(x, \otimes_{x} \ln 3\right)=H^{x}\left(x_{1} \otimes_{x}\right)
$$

Good. Fimb a sher complox "IEx st.

$$
H^{*}\left(X, I I_{x}\right)=H H_{\cdot \bar{p}}^{x}(X)
$$

Bord-marec constation
Recall $c_{i}(x)$ i-chmos \& x

$$
U \leq X \sim C_{i}(U) \text { i-chinis in } X \text {. }
$$

Problem: $U \leqslant X$ sino $c_{i}(v) \backsim c_{i}(x)$

$$
\uparrow
$$

larong in for restridur=

B-m chanis: $\sum_{\sigma} c_{\sigma} \cdot \sigma_{i}$
possidy y infinite sumo (but buly, finte)

If $u \leq V$, we get ratration

$$
C_{i}^{i m}(V) \rightarrow C_{i}^{B m}(U)
$$

Get a shat an X

$$
\subseteq^{-i} x: \cup \sim C_{i}^{B m}(u)
$$

sustat:

$$
I C_{=x}^{-i}: U \sim I C_{i}^{B m}(i \omega)
$$

Boundoy mapo: $C_{i}(U) \rightarrow C_{i-1}(U)$

$$
\rightarrow \text { Complax-a: } C_{x}^{0}, I C_{x}^{0}
$$

Thm: (1) $H^{-1}\left(x, C_{x}^{0}\right)=\operatorname{Hin}^{\sin }(x)$

$$
\text { (2) } 1 H^{6}(x, I \underline{I} \dot{x})=I t^{3 m}(x)
$$

If X \& comput, the

$$
H_{L}^{\operatorname{Tom}}(x)=H_{k}(x)
$$

Note $H^{2}(x, \Leftrightarrow \dot{g})=\operatorname{H}^{4}\left(x, \frac{0}{T} x\right)$ constunt sheaf

Quasture: Is tree some thing live Qx for ICx?

Quesi-isonorphowis and
coloudyy sheaves

Given Fo shat complex an X,
Pth-cilomiory shat:

$$
H^{i}\left(F_{0}\right)=\text { ho } D_{i} / \alpha_{i+1}
$$

Nolt: This is a fruming l sheaves?

$$
u \leq x \sim H^{i}\left(F_{2}\right)(u)
$$

De2: ti:f. \rightarrow G. is a qusi-isoisaphain of shaf compleses it

$$
H^{i}\left(F_{0}\right) \stackrel{\Phi}{1} \underset{\sim}{\Rightarrow} H^{i}\left(C_{0}\right) \forall i
$$

isom of chhom. sheives

Thm: If F_{0}, G. ve quai-isin then the hyper cshomology:

$$
H H^{x}\left(X_{v} F_{s}\right) \cong H^{x}\left(X, G_{\infty}\right) .
$$

Thm! If X mfol.
$\mathbb{Q}_{x} \operatorname{m}_{n}: \quad 0 \rightarrow \mathbb{Q}_{x}^{-n} \rightarrow 0 \rightarrow 0 \rightarrow \ldots$

ι
is a quasi-isomurphoin
exuit seguere!

Delisree's constrution IS: (quai-bain)
(1) Risht voivel funtor:

$$
\begin{aligned}
& X \xrightarrow{\$} Y, F^{0} \text { staf copple of } X \text {. } \\
& \rightarrow \$_{x}\left(F^{0}\right) \text { compoo an Y. }
\end{aligned}
$$

Pooblam: ϕ^{*}, ϕ_{x} ae wt aljoint on complexs. \rightarrow reire $\phi_{x}\left(F^{0}\right)$ wito ${ }^{\prime} R \phi_{x}\left(F^{0}\right)^{\prime \prime}$ If $F^{\circ} \rightarrow I^{\circ}$ ingictre roolution an X.

$$
R \phi_{x}\left(F^{\bullet}\right):=\phi_{x}\left(I^{0}\right)
$$

(2) Trunations $F^{\bullet}, m=Z$.

$$
\begin{aligned}
& F^{\bullet}: \rightarrow F_{m-2} \rightarrow F_{m-1} \rightarrow F_{m} \rightarrow F_{m+1} \rightarrow \cdots \\
& T_{i m+1}\left(F^{\circ}\right): \\
& \quad \forall F_{m-2} \rightarrow F_{m-1} \rightarrow k_{0} \lambda_{m-1} \rightarrow 0 \rightarrow \ldots
\end{aligned}
$$

Statifictoin:

$$
\begin{aligned}
& X=X_{n} \geq X_{n-2} 2 \cdots \geq X_{0} \\
& \rightarrow U_{n}=X-X_{n-l} \text { open sts } \\
& U_{2} \stackrel{i_{2}}{\rightarrow} U_{4} \xrightarrow{\text { in }} \rightarrow U_{n} \operatorname{in}_{\rightarrow} X
\end{aligned}
$$

smostu bus
Lat Bu [n 3 constat shat

$$
m u_{2}
$$

$$
\begin{aligned}
& \text { Inm ICx } \dot{x} \text { qusi-isois to }
\end{aligned}
$$

$$
\begin{aligned}
& \text { perveratus } \\
& \mathbb{R}^{k} \times(C L)
\end{aligned}
$$

Prat ue stalus + distinguibbel nhas an struta.
$E x) x=Q_{A}$

$$
\begin{aligned}
& A U=X \backslash[R] \\
& U \stackrel{i}{\circ} X
\end{aligned}
$$

$$
\begin{aligned}
H^{*}\left(T_{\leqslant 0} R_{i} \times \frac{Q_{u}}{}\right) & \\
& = \begin{cases}Q & \text { it } t=0,2 \\
0 & \text { i } L_{0}=1\end{cases}
\end{aligned}
$$

$$
T_{\left.30 R i x Q u\right|_{A} \simeq Q^{2}}^{\substack{T_{1} \\ \operatorname{stak}}}
$$

