Iecot tinis:

- $X=X_{n} \geq \cdots \geq X_{0} \quad$ statifud psuso-maniblQ
- $\bar{j}:\{2, \ldots, n\} \rightarrow Z$ pervisity

DeRn: $\left\{\in C_{i}^{T}(x)\right.$ is (\bar{p}, i)-alliozoll if

$$
\left.\lim (1\} \cap X_{n _L}\right) \leq \underbrace{j-L}_{\substack{j-L}}+p(\omega)
$$

$$
I C_{i}^{\bar{p}}(x)=\left\{\xi \in C_{i}(x) \mid\right.
$$

(1) $\{$ io (\bar{p}, i)-allauable
(2) ∂T is $\left(\bar{p}_{i},-1\right)$-allowable.

$$
\{
$$

\rightarrow Itt; ${ }^{P}(X)$ intersetim homology grops.

EX) $X=\operatorname{susp}\left(S^{\prime} \cup S^{\prime}\right)$

$$
\begin{aligned}
& H_{0}=Q \\
& H_{1}=Q \\
& H_{2}=Q \oplus Q .
\end{aligned}
$$

$$
X_{2}=X_{1}, \quad X_{1}=X_{0}=2 \text { pass. }
$$

$$
\bar{p}=(0)
$$

o- chairs imus x_{0}
1 -chains: mus X_{0}
2 -chains: d if hound misseo X_{0}

$$
\begin{aligned}
& I H_{0}^{(x)}(x)=Q \oplus \mathbb{Q} \\
& I H_{1}^{(x)}(x)=D \quad \leadsto \oiint \square \\
& I H_{2}^{(0)}(x)=\mathbb{Q} \oplus Q
\end{aligned}
$$

Ex) $X=\operatorname{susp}\left(S^{\prime} \cup S^{\prime}\right)$

$$
\begin{aligned}
& \bar{p}=(1) \\
& 0 \text { - chains wis } x_{0} \\
& 1 \text {-chains du } 70 \text { miss } x_{0} \\
& 2 \text { - chains dol. }
\end{aligned}
$$

$$
\begin{aligned}
& I H_{0}^{(1)}(x)=\Omega \\
& I H_{1}^{(1)}(x)=Q \\
& I H_{2}^{(2)}(x)=\Phi \otimes O .
\end{aligned}
$$

$\bar{p}=(-1)$ all cycles mix X_{0}

$$
\begin{aligned}
& I H_{0}^{(-1)}(X)=Q \oplus Q \\
& I H_{1}^{(-1)}(X)=B \oplus Q \\
& I H_{2}^{(-1)}(X)=0
\end{aligned}
$$

Ex) X mi sb $X \geq \phi \geq \cdots \geq \phi$.

$$
\bar{L} H_{i}^{\bar{j}}(x)=H_{i}(X) \text { for amp } \overline{\bar{p}}
$$

Q: Does IH: (X) epos in
Yes.

$$
\begin{array}{ll}
\text { Ex) } \quad x=x_{2} \geq \phi \geq p \\
\bar{p}=(-1) & x_{2} \geq p+2 p^{t} \\
H_{2}^{(-1)}(x)=H_{2}(x)=\mathbb{Z} \\
H_{2}^{(-)}(x)=H_{2}(x \backslash p t)=0 .
\end{array}
$$

Thm (Goresluy-muphersm)
If $p(2)=0$ al

$$
p(h) \leqslant p(h+1) \leqslant p(k)+1 \quad \forall h \leqslant n,
$$

then $I H^{\bar{p}}(x)$ is a top invorit (prost uxs sheew)
G-m perveroty renge:
$\bar{\square}$
$(0,0, \ldots, 0)$
zero perversity

$$
(0,0,1,1,2,2,3,3, \ldots)
$$

mille pervoity.

Remulh: Here ore other \bar{p} 's for whits

$$
\text { Ilt }{ }^{\bar{p}} \text { is a top invint }
$$

Rembir IH \& \& At a honategy invoien
Ex) $\quad X=c(1)^{r^{n-1}}=L_{\text {i-c,ce }}[0,1) / L x[0]$

$$
T \text { is a boundor ite } i \geqslant n-1-p(n)
$$

$$
\rightarrow \operatorname{IH}_{i}^{P}(x)= \begin{cases}0 & \text { if } i \geq n-1-p(n) \\ \operatorname{IH}_{i}^{p}(L) & f i(n-1-p(n)\end{cases}
$$

Remeln: It ${ }^{\bar{p}}$ is wt functonil: $\phi: x \rightarrow \varphi$ z

Normel spaes
X is normal if $\forall x \in X, \underset{\substack{\text { singdr } \\ \text { lowo }}}{\substack{\text { in }}}$ \exists a nbo \cup s.t. U\E is conneta

Ex: X marifib bo nomal.
Ex:

Ex:

Ex)

Als gem: lowal rings of X are integolly chood
Te: $\forall x \in x, H_{n}(x, x-x)=Q$.
Ihm (G-m) If X is romel, then (1) $I H_{i}^{E}(x)=H_{i}(x)$
(2) $I H_{i}^{\bar{p}}(x) \simeq H^{2 n-i}(x)$

Thms: Let \tilde{X} be T_{2} nomalizition o X then $I H_{i}^{\bar{p}}(\tilde{X})=I H_{i}^{\bar{p}}(X)$ for map G-m porvity. \bar{p}

If X is a ell.ptio cune, th \tilde{x} is monsinglum

$$
\rightarrow I H_{x}^{\overline{p_{x}}}(x)=I H_{x}^{\overline{\bar{F}}}(\widetilde{x})=H_{x}(\tilde{x}) .
$$

Intersectwn prodet + Poincir Quiter

$$
\begin{gathered}
I H_{i}^{\bar{p}}(x) \times I H_{j}^{\bar{q}}(x) \rightarrow I H_{i+j-h}^{\overline{p+q}}(x) \\
C \\
D
\end{gathered}
$$

(1) $\operatorname{Dim} C \cap X_{n-h} \leqslant i-k+p(h)$
(2) Dim $D \cap X_{n-L} \leqslant j-k+q(k)$

Suppor $\frac{(i+j-n)-c h a i n}{C \cap D \cap X_{n-2}}$ propor

$$
\begin{gathered}
\rightarrow \lim _{1} \leqslant i-k+p(k)+j-h+q(h)-(n-h) \\
=(i+j-n)-h+(p(h)+q(h))
\end{gathered}
$$

$\Rightarrow C \cap D$ is $(\bar{p}+\bar{q}, \bar{i}+j-n)-$ allax ${ }^{2}$ be.
$\frac{\text { Don: }}{\text { if }} C, D$ ar dim. trasiox (CMO)
(1) $C \cap D$ is propor $(2$ im $=i+j-n)$
(2) CnD is $(\bar{p}+\bar{q})$ allarable.

Moling Lammen (m_{c} Cory $)$:
Given $\alpha \in I H^{3} ;(x), \beta \in I H^{q}:(x)$,
$\exists C, D$ s.t. $\alpha=[c], \beta=[. D]$ and chil.

Ider for moving lamma

$$
X=X_{n} \geq X_{n-1} \geq \cdots \geq X_{0}
$$

(1) Euch $X_{i}-X_{i-1}$ os smath Smath lowo more $|\alpha| \cap \mid$ B $\mid \sim c$ Cho is $x-x_{n-1}$
(2) Suppre C his m $X-X_{n-k}$

$$
\begin{aligned}
& \text { Fr } x \in X_{n-L}-X_{n-l-1} \\
& \left.N_{x}=\mathbb{R}^{n-h} \times c<L\right)
\end{aligned}
$$

a can wave tere preaning "higho" Sim traversdit,

Pistur frm G-m:

Poincé Qullty:
If $\bar{p}+\bar{q}=\bar{t} \quad(p(\omega)+q(\omega)=h)$

$$
i+j=n
$$

Hen IH: $H_{i}^{\bar{p}}(x) \times I H_{n-i}^{\bar{a}}(x) \rightarrow I H_{0}^{\overline{+}}(x)=\mathbb{R}$ is non-2egenocte.

Cor: Qim $H_{!}^{\bar{p}}=\operatorname{Sin} H_{n-i}^{\bar{q}}$,
If $\bar{p}=\bar{s}, \bar{q}=\bar{t}$, and X norml, than

$$
H_{i}(x) \times H^{a}(x) \rightarrow B
$$

If $\bar{p}=\bar{c}=\bar{m}$, the $\bar{m}+\bar{m}=\bar{t}$, (Comples)

$$
I H_{i}^{\bar{m}}(x) \times I H_{n-i}^{\bar{m}}(x) \rightarrow \&
$$

$\left.E_{x}\right)(-=-\cdots \quad \bar{m}=(0)$

H_{0}	Q
H_{1}	0
H_{2}	$Q \oplus Q$

