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Local L-Functions for Split Spinor Groups
Mahdi Asgari

Abstract. We study the local L-functions for Levi subgroups in split spinor groups defined via the
Langlands-Shahidi method and prove a conjecture on their holomorphy in a half plane. These results
have been used in the work of Kim and Shahidi on the functorial product for GL2×GL3.

1 Introduction

The purpose of this work is to prove a conjecture on the holomorphy of local Lang-
lands L-functions defined via the Langlands-Shahidi method in split spinor groups.
These local factors appear in the Euler products of global automorphic L-functions
and information about their holomorphy is frequently exploited in order to prove
results about the analytic properties of global objects. In particular, in a recent im-
portant work, H. Kim and F. Shahidi have used some cases of our result here in order
to handle some local problems in their long-awaited result on the existence of sym-
metric cube cusp forms on GL2 (cf. [11], [12]).

Apart from trace formula methods, two methods have been suggested to study
these factors: the Rankin-Selberg method which uses “zeta integrals” and the
Langlands-Shahidi method which uses “Eisenstein series”. Our focus in this work
is on the latter [13], [16], [18], [20].

Let M be a (quasi) split connected reductive linear algebraic group defined over
a non-archimedean local field F of characteristic zero. Let M̂ = LM0 denote the
connected component of its L-group. Let σ be an irreducible admissible unramified
representation of M = M(F). The Satake isomorphism attaches a unique semisimple
conjugacy class A in M̂ to each such σ. (When M is quasi-split, one needs LM.) When
the above data comes from a global automorphic representation, these conditions are
satisfied for all but finitely many places.

If r is a (finite dimensional) complex analytic representation of M̂, one defines the
local Langlands L-function by

L(s, σ, r) = det
(

I − r(A)q−s
)−1

, s ∈ C,

where q is the cardinality of the residue class field of F.
However, it remains to define such local L-functions for the remaining places and

the resulting completed L-functions should satisfy some global properties such as
analytic continuation (with a finite number of poles) and functional equation.

The idea of the Langlands-Shahidi method is to use intertwining operators to de-
fine the γ-factors, which are essentially quotients of the local L-functions. These
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factors are defined in terms of the harmonic analysis on the group. In this method
one assumes M to be the Levi component of a parabolic subgroup P = MN in a
(quasi) split connected reductive group G with N the unipotent radical of P. Also,
one assumes that σ is generic, i.e., it has a Whittaker model. (One could define the
L-functions for any irreducible admissible tempered σ to be the same as that of the
unique generic one that conjecturally exists in its L-packet.)

The representation r is a representation of the L-group whose restriction to the
connected component, M̂, is assumed to be an irreducible constituent of the adjoint
representation of M̂ on the Lie algebra of the dual of N = N(F). Such r’s turn out to
cover most of the interesting L-functions studied so far.

Defining these L-functions, Shahidi in [20] set forth the following:

Conjecture If σ is tempered, then L(s, σ, r) is holomorphic for <(s) > 0.
This conjecture was subsequently proved in a series of papers for the cases where

G is a general linear, symplectic, special orthogonal, or unitary group (cf. [17], [19],
[21], [6]). Given that it is enough to prove the conjecture for G simple, it remained
to prove the conjecture for the so-called spinor groups, the simply-connected double
coverings of special orthogonal groups, as well as exceptional groups.

The conjecture is well-known for an exceptional group of type G2 (cf. p. 284 of
[19]). In this work, we prove it for split spinor groups. We expect the same methods
to work for quasi-split spinor groups as well and we hope to address those cases
elsewhere.

H. Kim has recently proved the conjecture for Levi subgroups of E-type excep-
tional groups except for the following four Levi subgroups: Cases E7-3, E8-3, and
E8-4 of [18] as well as Case (xxviii) of [13] (D7 ⊂ E8) (cf. [10]). The above four Levi
subgroups all involve a spin group or an exceptional group of type E6 for which we
do not have enough information about the discrete series representations (e.g., how
to obtain them from supercuspidals). The author has proved the conjecture for an
exceptional group of type F4 (cf. [1]).

The general idea of the proof, both in our work and in Kim’s, is based on the
construction of discrete series representations out of supercuspidal ones. This has
been worked on by many people including I. Bernstein and A. Zelevinsky [3], [29]
for general linear groups and D. Ban, C. Jantzen, C. Mœglin, G. Muić, and M. Tadić
for other classical groups (cf. [2], [8], [9], [14], [15], [25], [26], [27]). In Section 4
we will imitate Tadić’s method for GSpin groups, defined in Section 2. We then
follow the computations of Section 4 of [6] to prove the holomorphy in our cases in
Section 5.

The fact that the spinor groups have complicated Levi factors (cf. 2.1) is an obsta-
cle in applying the same methods that have been applied in other classical groups in
order to prove the conjecture. Our idea is to consider another class of groups, GSpin,
whose derived groups are spinor groups while having much “easier” Levi subgroups.
This is similar to the case of Levi subgroups of GLn versus those of SLn.

The author would like to offer his deep gratitude to Professor F. Shahidi for his
constant help and supervision throughout this work which was part of the author’s
Ph.D. dissertation at Purdue University. The author is also grateful to D. Ban,
D. Goldberg, C. Jantzen, H. Kim, A. Roche, R. Schmidt, J.-K. Yu, and Y. Zhang for
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many helpful discussions at various stages of this work. Thanks are also due to the
referee for making a number of comments and suggestions which improved this pa-
per.

2 The Structure of GSpin Groups

We define the reductive group GSpinm whose derived group will be Spinm and study
the structure of its Levi components in detail. This section will, in fact, present the
main idea of the paper which is to replace the study of the L-functions for Spin groups
with those of GSpin groups since the latter have much nicer Levi subgroups.

Throughout this work, we will be dealing with split spinor groups. The same
methods are expected to go through for quasi-split spinor groups which we hope to
address elsewhere.

To study the L-functions via the Langlands-Shahidi method which is the subject
of current work one looks at parabolic induction. Hence, we have to know what the
Levi subgroups in Spinm look like. In other classical groups such as SO or Sp the Levi
subgroups are isomorphic to a product of general linear groups and another SO or
Sp of a smaller rank.

Question Are the Levi subgroups in Spinm isomorphic to

GLn1 ×GLn2 × · · · × GLnk × Spinm ′

with 2(n1 + n2 + · · · + nk) + m ′ = m?
The answer turns out to be negative.

Example 2.1 The group Spin5 is simply-connected of type B2. The Siegel Levi
(generated by the long root) is isomorphic to GL1× SL2 since it has to be the same
as the Levi generated by the long root in Sp4. Similarly, the non-Siegel Levi in Spin5
is isomorphic to GL2. This is exactly the opposite of what one would expect if the
answer to the above question were positive.

As a more complicated example, one could look at the Siegel Levi in Spin2n+1 when
n = 2k is even. As in [22], one can verify that the Levi subgroup is isomorphic to

GL1× SLn

{(λ, λ · In) : λk = 1}
,

while one would expect to get GLn if the answer to the above question were positive.
As another example, consider Spin8. This is a group of type D4 with the following

Dynkin diagram.

α1

c
α2

c
c
α3

c
α4

�
�
��

Z
Z
ZZ
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Now let M be the standard Levi generated by {α2, α3, α4}. If the answer to the
above question were positive, we would expect M to be isomorphic to GL1× Spin6 =
GL1× SL4. However, we show that

M ' GL1× SL4

{(1, I4), (−1,−I4)}
.

To see this note that M = A ·MD (almost direct product), where MD is the derived
group of M and

A =
( 4⋂

i=2

kerαi

) 0
.

Since Spin8 is simply-connected, so is the derived group of its Levis. Hence, MD '
SL4. To compute A note that it lies in the maximal torus T of Spin8 and again simply-
connectedness implies that each t ∈ T can be written uniquely as

t =
4∏

j=1

α∨j (t j), t j ∈ GL1 .

Thus,

αi(t) =
4∏

j=1

t
〈αi ,α

∨
j 〉

j ,

where 〈·, ·〉 denotes the Z-pairing between the roots and coroots. Computing the
kernels one can describe A as

{α∨1 (λ2)α∨2 (λ2)α∨3 (λ)α∨4 (λ) | λ ∈ GL1}.

All that remains now is to find the intersection of A and MD which consists of the
elements in A for which λ2 = 1. Therefore, A ∩MD = {1, α∨3 (−1)α∨4 (−1)}. This
proves our assertion.

We will eventually need to study tempered (in fact, discrete series) representations
of the F-points of such Levi subgroups, where F is a non-archimedean local field of
characteristic zero. Clearly such complicated Levi components don’t help at all. To
remedy this we will look instead at another class of groups, namely GSpin groups,
which have Spin groups as their derived groups. These groups turn out to have sim-
pler Levi factors. Since the local L-functions we are interested in depend only on the
derived group of the group in question, the L-functions are the same for both classes
of groups.

The group Spinm is the split simple simply-connected algebraic group of type Bn

if m = 2n + 1 with Dynkin diagram
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α1

c
α2

c
αn−2

c
αn−1

c
αn

cp p p p 〉

and of type Dn if m = 2n with the following Dynkin diagram.

α1

c
α2

c
αn−3

c
αn−2

c
c
αn−1

c
αn

p p p p �
�
��

Z
Z
ZZ

This group is a double covering, as algebraic groups, of the group SOm.
Fix a maximal torus T contained in a fixed Borel subgroup B in Spinm. This cor-

responds to a choice of a system of simple roots ∆ = {α1, α2, . . . , αn} as above. We
denote the associated coroots by ∆∨ = {α∨1 , α∨2 , . . . , α∨n }. We then have αi : T −→
GL1 and α∨i : GL1 −→ T such that αi ◦α∨j (x) = x〈αi ,α

∨
j 〉 where 〈·, ·〉 : X×X∨ −→ Z

is the Z-pairing between characters and cocharacters. Following the same computa-
tions as in 2.1, one immediately gets the following well-known fact.

Proposition 2.2 The center of Spinm is equal to

{1, c} ' Z/2Z

if m = 2n + 1, where c = α∨n (−1). If m = 2n, then it is equal to

{1, c, z, cz} ' Z/2Z× Z/2Z

provided that n is even and
{1, z, c, z3} ' Z/4Z

otherwise, where
c = α∨n−1(−1)α∨n (−1)

and

z =
n−2∏
j=1

α∨j
(

(−1) j
)
· α∨n−1(−1)

if n is even and

z =
n−2∏
j=1

α∨j
(

(−1) j
)
· α∨n−1(

√
−1)α∨n (

√
−1)

if n is odd. Observe that c = z2.
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We can now define the group GSpinm.

Definition 2.3 For m ≥ 3 define

G =
GL1× Spinm

{(1, 1), (−1, c)}

where c is defined as in 2.2. We will call this group GSpinm. Write A for the image
of {(λ, 1) | λ ∈ GL1} and H for the image of {(1, g) | g ∈ Spinm} in G. Then,
G = A ·H with S = A ∩H = {1, c}. Clearly, the derived group of GSpinm is Spinm.

We also define GSpin0 and GSpin1 to be GL1. (The group GSpin2 is not defined
here and will not come up in our discussions.)

We now give an alternative description of GSpinm in terms of root datum which
will be helpful later on.

Proposition 2.4 The reductive group GSpinm can be given by the root datum
(X,R,X∨,R∨) where

X = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen,

and
X∨ = Ze∗0 ⊕ Ze∗1 ⊕ · · · ⊕ Ze∗n ,

equipped with the standard Z-pairing while R and R∨ are defined as follows.

(a) If m = 2n + 1, then

R = {α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = en},

R∨ = {α∨1 = e∗1 − e∗2 , α
∨
2 = e∗2 − e∗3 , . . . , α

∨
n−1 = e∗n−1 − e∗n , α

∨
n = 2e∗n − e∗0}.

(b) If m = 2n, then

R = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en},

R∨ = {α∨1 = e∗1 − e∗2 , . . . , α
∨
n−1 = e∗n−1 − e∗n , α

∨
n = e∗n1

+ e∗n − e∗0}.

Proof We give the proof for the case of m = 2n + 1. The other case is similar.
We compute the root datum of GSpin2n+1 from that of Spin2n+1 and verify that it
can be written as above. Start with the character lattice of Spin2n+1. Since Spin2n+1
is simply-connected, this lattice is the same as the weight lattice of the Lie algebra
so2n+1 which is well-known. Choose f1, f2, . . . , fn (cf. [7]) such that the Z-span
of f1, f2, . . . , fn, ( f1 + · · · + fn)/2 is the character lattice of Spin2n+1. The charac-
ter lattice of GL1× Spin2n+1 can then be written in the same way as the Z-span of
f0, f1, f2, . . . , fn, ( f1 + · · · + fn)/2. Now the characters of GSpin2n+1 are those that
have trivial value at the element (−1, c). Note that fi(−1, c) = 1 for 1 ≤ i ≤ n and(

f0 + ( f1 + · · · + fn)/2
)

(−1, c) = 1. In fact, the character lattice of GSpin2n+1 can
be written as the Z-span of f1, f2, . . . , fn, f0 + ( f1 + · · · + fn)/2. Using the Z-pairing
of the root datum, one can also compute the cocharacter lattice which turns out to
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be spanned by f ∗0 and f ∗i + ( f ∗0 /2), 1 ≤ i ≤ n. Now for 1 ≤ i ≤ n set ei = fi and
set e0 = f0 + ( f1 + · · · + fn)/2. Also set e∗i = f ∗i + ( f ∗0 )/2 and e∗0 = f ∗0 . Notice that
the roots and coroots which were primarily given in terms of fi ’s can now be written
in terms of ei ’s as in the proposition. For example, the coroot 2 f ∗n can be written as
2(e∗n − f ∗0 /2) = 2e∗n − f ∗0 = 2e∗n − e∗0 . We chose to write them in terms of ei ’s since
they become more similar to the way root datum of other classical groups, e.g., GSp2n
are usually written (cf. 2.6).

Remark 2.5 The fact that ( f1 + · · · + fn)/2 lies in the character lattice of Spin2n+1 is
what keeps this group from having Levi subgroups similar to those of classical groups.
On the other hand, there is no such element in the character lattice of GSpin2n+1.

Remark 2.6 The root datum of GSpin2n+1 is the dual root datum to the one for the
group GSp2n while that of GSpin2n is dual to root datum of GSO2n (cf. [25] for the
root datum of GSp2n, for example).

We are now ready to compute the Levi subgroups of G.

Theorem 2.7 Let L be a Levi subgroup in G. Then, L is isomorphic to

GLn1 ×GLn2 × · · · × GLnk ×GSpinm ′

with 2(n1 + n2 + · · · + nk) + m ′ = m and m ′ 6= 2.

Remark 2.8 Note that if m ′ = 2, then m is automatically even and G is a group of
type Dm/2 in which case leaving any of the last two roots out will produce isomorphic
Levi subgroups. Since we are only interested in L-functions, we will not deal with the
maximal Levi corresponding to the simple root that is one to the last in our ordering.
This will allow us to avoid some minor changes that would be otherwise necessary
later on when we study irreducibility of induced representations in this case (cf. [2]).

Proof By 2.6 we know that the dual of GSpinm is GSp2n if m = 2n + 1 and GSO2n if
m = 2n. Now notice that the Levi subgroups in GSpin are just duals of those in GSp
or GSO which are well-known to be products of general linear groups and another
smaller rank group of the same type. This will complete the proof.

3 Local L-Functions and the Langlands-Shahidi Method

What we will review in this section is available in the generality of quasi-split con-
nected reductive groups. However, we will be working with a split simple group.
Since our results concern split spinor groups this does not impose a real restriction
while allowing us to avoid some technicalities such as in the definition of L-group.
In fact, we will only deal with the connected component of what is usually called the
L-group which involves Galois group or, more precisely, the Weil-Deligne group (cf.
[28] and [4]). We refer to the connected component of the L-group as the complex
dual or simply the dual of the group in question.
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Let F be a non-archimedean local field of characteristic zero. Let O be the ring of
integers in F and P denote its unique maximal ideal. Then O/P is a finite field whose
cardinality we will denote by q.

Let G be a split connected reductive linear algebraic group defined over F. Fix a
Borel subgroup B of G and write B = TU where U is the unipotent radical of B and
T is a fixed maximal torus in G. Let ∆ be the corresponding system of simple roots of
G with respect to T. Let P be a maximal standard parabolic subgroup in G with Levi
decomposition P = MN, (N ⊂ U) and T ⊂ M. Then M = Mθ, where θ = ∆ \ {α}
for a unique simple root α ∈ ∆.

Let a = Hom
(

X(M)F,R
)

, where X(M)F denotes the F-rational characters of M.
We define the dual of a and its complexification as follows:

a∗ := X(M)F ⊗Z R,

a∗C := a∗ ⊗ C.

Recall that since M is assumed to be maximal, a∗C/z∗C is one-dimensional and we
will shortly choose an identification of it with C. Here z denotes the Lie algebra of the
split torus in the center of G.

Let ρP be half of the sum of positive roots of G whose root vectors generate N and
define α̃ to be

1

〈ρP, α∨〉
ρP ∈ a∗,

where 〈·, ·〉 is the Z-pairing between the roots and coroots of G. We now identify
s ∈ C with sα̃ ∈ a∗C. Also, define a homomorphism

HP : M −→ a

via
q〈χ,HP(·)〉 = |χ(·)|F, χ ∈ X(M)F.

We also have

(1) q〈sα̃,HP(·)〉 = |α̃(·)|sF,

where α̃(·) is the value of α̃ on an element of M and s ∈ C.
Let G have the root datum (X,R,X∨,R∨), where X and X∨ denote the root lattice

and coroot lattice of G equipped with a Z-pairing

〈·, ·〉 : X × X∨ → Z,

while R and R∨ are the set of roots and coroots. The root datum obtained by in-
terchanging the roots and coroots, (X∨,R∨,X,R), determines another connected
reductive group called the dual of G (cf. [23]). When considered as a group over
complex numbers, we refer to it as the complex dual of G and denote it by Ĝ. It is the
connected component of the L-group of G.

Now consider M̂, the complex dual of M which can be realized as a Levi subgroup
in Ĝ. We now define the local Langlands L-function.
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Definition 3.1 Let σ be an unramified representation of M = M(F) (i.e., having
an M(O)-fixed vector). The Satake isomorphism then associates to it a semisimple
conjugacy class, Aσ , in M̂ (which we will normally identify with a representative Aσ

in T̂, the maximal torus of M̂). For a finite-dimensional complex representation r of
M̂ define the local Langlands L-function as follows.

L(s, σ, r) := det
(

I − r(Aσ)q−s
)−1

, s ∈ C.

Clearly, in the above definition, we did not have to assume M to be a Levi subgroup
in another group. However, we will need this for the Langlands-Shahidi method.

That method uses specific r’s which turn out to include many important examples
of L-functions studied so far. To describe them let P̂ be a standard parabolic in Ĝ
having M̂ as its Levi factor and write P̂ = M̂N̂ (cf. [4]). Define n̂ to be the Lie algebra
of N̂ on which M̂ acts via the adjoint action, r. Then, there exists a positive integer m
such that

n̂ =
m⊕

i=1

Vi ,

where Vi , spanned by root vectors Xβ∨ ∈ n̂ with 〈α̃, β∨〉 = i, is an irreducible sub-
representation of r =

⊕m
i=1 ri (cf. [18]). Hence, one gets the L-functions L(s, σ, ri)

for each 1 ≤ i ≤ m.
How do we define L(s, σ, ri) if σ is ramified? The Langlands-Shahidi method does

this assuming that σ is an irreducible admissible generic representation.
Shahidi studied intertwining operators and local coefficients in a series of papers.

These in turn lead to the definition of γ-factors which we recall below.
We remark that these results cover both global and local (archimedean and non-

archimedean) cases. However, since in this work we are only concerned with non-
archimedean local places, we present the part of existence of γ-factors that we will be
using.

We should also remark that throughout this work a multiplicative character χ of
U = U(F) is fixed which one needs in the definition of a generic representation (i.e.,
having Whittaker functions with respect to χ or being χ-generic). We do this by
fixing an additive character ψF of F on which the γ-factors as well as ε-factors, to be
introduced later, depend. The L-functions, however, do not depend on this additive
character. We also assume that χ and ψF are compatible in the sense of Section 3 of
[20]. For simplicity, we will not repeat them throughout this work.

Shahidi proved in Theorem 3.5 of [20] that there exist m complex functions

γi(s, σ, r, ψF) = γ(s, σ, ri),

each a rational function in q−s, satisfying certain local and global properties.
Below we recall some of these properties that will be helpful to us. We should

remark that Theorem 3.5 of [20] in its complete generality is the main result of [20]
which also establishes uniqueness of these γ-factors.
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Proposition 3.2 For each 1 ≤ i ≤ m we have,

γ(s, σ, ri , ψF)γ(1− s, σ̃, ri , ψ̄F) = 1.

Moreover, γ(s, σ, r̃i) = γ(s, σ̃, ri).

Definition 3.3 Let Pσ,i ∈ C[X] with Pσ,i(0) = 1 be such that Pσ,i(q−s) is the
normalized numerator of γ(s, σ, ri). If σ is tempered, define the local Langlands L-
function L(s, σ, ri) to be the inverse of this polynomial, Pσ,i(q−s)−1. One then defines
L(s, σ, ri) for arbitrary irreducible admissible generic σ via the Langlands classifica-
tion (cf. [20, p. 308]).

Proposition 3.4 There exists a monomial in q−s, denoted by ε(s, σ, ri , ψF), such that

γ(s, σ, ri , ψF) = ε(s, σ, ri , ψF)L(1− s, σ, r̃i)/L(s, σ, ri).

Remark 3.5 Note that the L-functions on the right hand side of the above propo-
sition do not depend on ψF while the ε-factor does. Also, by arguments on p. 287
of [19] and Proposition 7.8 of [20], we know that if σ is unitary supercuspidal, then
L(s, σ, r) is, up to a monomial in q−s, equal to L(−s, σ, r̃).

Another important property of the γ-factors is their multiplicativity which is es-
sential in our work. Let M = Mθ be a maximal standard Levi subgroup in G and let σ
be an irreducible admissible χ-generic representation of M(F). Assume P ′ = M ′ ·N ′
to be a standard parabolic subgroup inside M and M ′ = Mθ ′ with θ ′ ⊂ θ. Also
assume that σ ⊂ IndP ′↑M σ ′ ⊗ 1 where σ ′ is an irreducible admissible generic repre-
sentation of M ′. Let w = w`,∆w−1

`,θ where w`,∆ = w−1
`,∆ is the unique longest element

in the Weyl group of G and w`,θ = w−1
`,θ is the unique longest element in that of M. Set

θ1 = θ ′ and w ′1 = w. There exists a simple root α1 ∈ ∆ such that w ′1(α1) < 0. Define
Ω1 = θ1 ∪ {α1}. Now MΩ1 contains Mθ1 as a maximal Levi. Let w1 = w`,Ω1 w−1

`,θ1
and

w ′2 = w ′1w−1
1 . Let θ2 = w1(θ1) and continue this process to define successive θ j ’s and

Ω j ’s. There exists n such that w ′n = 1, i.e., w = wn−1wn−2 · · ·w1.

Proposition 3.6 If we set w j = w j−1 · · ·w1 for 2 ≤ j ≤ n − 1 and w1 = 1, then
w j(σ ′) is a representation of Mθ j (F) and we have

γ(s, σ, ri , ψF) =
∏
j∈Si

γ
(

s,w j(σ
′),Ri j , ψF

)
.

Each ri , 1 ≤ i ≤ m, is an irreducible constituent of the adjoint action of the L-group of
M on the Lie algebra of the L-group of N and R j , 1 ≤ j ≤ n− 1, is the same action for
Mθ j in MΩ j . Every irreducible component of the restriction of ri to the L-group of M ′ is
equivalent, under w j , to an irreducible constituent Ri j of some R j for a unique j. The
set Si consists of all such j for a given i.
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To explain the sets Si more clearly, note that in the above product, i is fixed and
out of (possibly) several j’s we take the appropriate constituent of appropriate R j ’s
on the right hand side for the product corresponding to the fixed i on the left hand
side. All the constituents of all the j’s would then cover all the ri ’s, i = 1, 2, . . . ,m.
In other words, R j =

⊕
Ri j with the sum over all i’s such that j ∈ Si .

Remark 3.7 The γ-factors are defined via “local coefficients” (cf. part 3 of The-
orem 3.5 of [20] and its proof). We refer to [16] for discussion about these coeffi-
cients. Local coefficients only depend on the derived group of the reductive group
in question. This implies that we only need to study the γ-factors and L-functions
for semisimple groups. In fact, it is enough to prove the holomorphy for these L-
functions, which is our purpose in this work, for Levi subgroups of simple groups.

Another property of γ-factors that we will need is that twisting the representation
on the Levi by certain characters translates into a shift in the complex parameter s.
More precisely,

Proposition 3.8 Let σ0 be an irreducible admissible representation of M and let σ =
σ0 ⊗ q〈s0α̃,HP(·)〉, where HP is as in equation (1) of Section 3. Then L(s, σ, r) =
L(s + s0, σ0, r).

This property turns out to be essential in proving that the L-functions for dis-
crete series (and tempered) representations, which are obtained as products of those
for supercuspidal representations, have their possible poles for <(s) > 0 cancelled
among different terms, i.e., they are holomorphic.

4 Discrete Series Representations in GSpin Groups

In this section we describe the parabolically induced representations on GSpinm(F)
that contain discrete series subrepresentations. We apply a method similar to the one
used by M. Tadić. His method is based on Casselman’s square integrability criteria
for which we need some preparation. Since Proposition 3.6 was formulated in terms
of subrepresentations, we will state the following results using subrepresentations as
opposed to subquotients although the latter might seem more natural.

As before, let ∆ be the set of simple roots of G = GSpinm with respect to some
maximal torus T. For any θ ⊂ ∆, define

Aθ =
(⋂
α∈θ

kerα
) 0
.

Standard Levi components in G are centralizers in G of these Aθ’s, hence in one-one
correspondence with the subsets of ∆. We denote such Levi subgroups by Mθ and a
standard parabolic containing them by Pθ. We also define

A−θ = {a ∈ Aθ : |α(a)| ≤ 1,∀α ∈ ∆ \ θ}.

Moreover, two subsets θ and Ω of ∆ are said to be associate if there is an element w
in the Weyl group of G with respect to T such that w(θ) = Ω.
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For an irreducible admissible representation σ of M = M(F), we let iG,M(σ) de-
note the normalized parabolically induced representation from σ⊗1 on the parabolic
subgroup P = MN to G = G(F). Similarly, if π is an irreducible representation of G,
then we let rM,G(π) denote the normalized Jacquet module of π with respect to P (cf.
[5] for more detailed explanation of these notations). We can now state Casselman’s
square integrability criteria for our case.

Theorem 4.1 Let Mθ be the Levi component of a parabolic subgroup Pθ = MθNθ in
G = GSpinm. Assume that σ is a supercuspidal representation of M = Mθ(F). An
irreducible admissible representation π ↪→ iG,M(σ) is square integrable if and only if

(a) π restricted to A∆ is unitary.
(b) for every Ω ⊂ ∆ associate to θ and every central character χ of rMΩ,G(π) we have
|χ(a)| < 1 for all a ∈ A−Ω \ A∅(O)A∆.

Proof This is a version of Theorem 6.5.1 of [5].

We now give another version of the above that is more suitable to use for our
purposes.

Proposition 4.2 Define

βi = (1, . . . , 1︸ ︷︷ ︸
i times

, 0, . . . , 0) ∈ Rn.

Let π ↪→ iG,M(σ) be an irreducible smooth representation of GSpinm(F) and assume
that σ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk ⊗ τ , where ρi is a supercuspidal representation of GLni (F)
and τ is one of GSpinm ′(F), is such that the corresponding Levi is minimal among
the ones with rM,G(π) 6= 0. Write each ρi as ρi = νe(ρi )ρu

i with e(ρi) ∈ R and ρu
i

unitarizable. Here, ν denotes | det(·)|F . Define

e∗(σ) =
(

e(ρ1), . . . , e(ρ1)︸ ︷︷ ︸
n1 times

, . . . , e(ρk), . . . , e(ρk)︸ ︷︷ ︸
nk times

, 0, . . . , 0︸ ︷︷ ︸
m ′ times

)
.

If π is square integrable, then (
e∗(σ), βn1

)
> 0,(

e∗(σ), βn1+n2

)
> 0,

...(
e∗(σ), βn1+···+nk

)
> 0.

Conversely, if the above inequalities hold for all such partitions and all such σ’s, then π
is square integrable.
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Proof The proof of this statement is straight forward from 4.1.

We will need the following result of Zelevinsky [29].

Proposition 4.3 (Zelevinsky) Let πi , i = 1, 2 be irreducible supercuspidal represen-
tations of GLni (F). If π1 6' π2ν

±1, then π1 × π2 is irreducible, where π1 × π2 denotes
the induced representation from π1 ⊗ π2 via parabolic induction.

We now present the main statements of this section. Let G denote GSpinm(F)
and M denote the F-points of the standard Levi corresponding to the partition m =
2(n1 +n2 + · · ·+nk)+m ′. Assume that ρi is a supercuspidal representation of GLni (F)
and τ is one of GSpinm ′(F) and let ρ be the representation on M defined by

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk ⊗ τ .

Also, set
ρ1 × ρ2 × · · · × ρk o τ = iG,M(ρ).

Write ρi = νeiρu
i with ei ∈ R and ρu

i unitary.

Theorem 4.4 If ρ1 × ρ2 × · · · × ρk o τ has a discrete series subrepresentation, then
ρu

i ' ρ̃u
i for i = 1, 2, . . . , k.

Theorem 4.5 If ρ1 × ρ2 × · · · × ρk o τ has a discrete series subrepresentation, then
2ei ∈ Z for i = 1, 2, . . . , k.

Proof We use the notation and techniques used in [26], [25], [24], [2]. Let π be the
discrete series subrepresentation in the above theorems. Then ρ is a quotient of the
Jacquet module rM,G(π) by Frobenius reciprocity.

Fix i0 ∈ {1, 2, . . . , k} and set

Y 0
i0

=
{

i ∈ {1, . . . , k} | ∃α ∈ Z such that ρi0 ' ναρi

}
,

Y 1
i0

=
{

i ∈ {1, . . . , k} | ∃α ∈ Z such that ρ̃i0 ' ναρi

}
,

Yi0 = Y 0
i0
∪ Y 1

i0
,

Y c
i0

= {1, . . . , k} \ Yi0 .

We first prove Theorem 4.4. Assume ρu
i0
6' ρ̃u

i0
. For j0, j ′0 ∈ Y 0

i0
, j1, j ′1 ∈ Y 1

i0
, and

jc ∈ Y c
i0

we have all the following relations (cf. 4.3).

ρ j0 × ρ̃ j ′0
' ρ̃ j ′0

× ρ j0 , ρ j1 × ρ̃ j ′1
' ρ̃ j ′1

× ρ j1 ,

ρ j0 × ρ j1 ' ρ j1 × ρ j0 , ρ̃ j1 × ρ̃ j1 ' ρ̃ j1 × ρ̃ j0 ,

ρ j0 × ρ jc ' ρ jc × ρ j0 , ρ̃ j0 × ρ jc ' ρ jc × ρ̃ j0 ,

ρ j1 × ρ jc ' ρ jc × ρ j1 , ρ̃ j1 × ρ jc ' ρ jc × ρ̃ j1 .
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If m ′ 6= 0 or 1, then

ρ j0 o τ ' ρ̃ j0 o τ , ρ j1 o τ ' ρ̃ j1 o τ

and if m ′ = 0 or 1, then

ρ j0 o 1 ' ρ̃ j0 o 1, ρ j1 o 1 ' ρ̃ j1 o 1.

Write

Y 0
i0

= {a1, . . . , ak0},

Y 1
i0

= {b1, . . . , bk1},

Y c
i0

= {d1, . . . , dkc},

with ai < a j , bi < b j , and di < d j for i < j. We use the above relations to get

ρ1 × · · · × ρk o τ

' ρa1 × · · · × ρak0
× ρd1 × · · · × ρdkc

× ρb1 × · · · × ρbk1
o τ

' ρa1 × · · · × ρak0
× ρd1 × · · · × ρdkc

× ρb1 × · · · × ρbk1−1
× ρ̃bk1

o τ

' ρa1 × · · · × ρak0
× ρd1 × · · · × ρdkc

× ρ̃bk1
× ρb1 × · · · × ρbk1−1

o τ

' · · ·

' ρa1 × · · · × ρak0
× ρ̃bk1

× · · · ρ̃b1 × ρd1 × · · · × ρdkc
o τ .

In the same way, we get

ρ1 × · · · × ρk o τ ' ρb1 × · · · × ρbk1
× ρ̃ak0

× · · · ρ̃a1 × ρd1 × · · · × ρdkc
o τ .

We also get similar relations in the case of m ′ = 0 or 1 with τ in the above replaced
by 1. Now Frobenius reciprocity implies that the representations

ρ ′ = ρa1 ⊗ · · · ⊗ ρak0
⊗ ρ̃bk1

⊗ · · · ρ̃b1 ⊗ ρd1 ⊗ · · · ⊗ ρdkc
o τ

and
ρ ′ ′ = ρb1 ⊗ · · · ⊗ ρbk1

⊗ ρ̃ak0
⊗ · · · ρ̃a1 ⊗ ρd1 ⊗ · · · ⊗ ρdkc

o τ

are the quotients of the corresponding Jacquet modules. Consider the representation
ρa1 × · · · × ρak0

× ρb1 × · · · × ρbk1
of GLu(F) for some integer u. Now we have(

βu, e∗(ρ ′)
)

= −
(
βu, e∗(ρ ′ ′)

)
which is a contradiction with Proposition 4.2 since

not both of them could be strictly positive.
Theorem 4.5 is proved similarly. Note that since ρi is in particular a tempered

representation of GLni (F) it is generic which implies that if να o τ reduces, then
2α ∈ Z. One will use this to finish the proof.
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5 Holomorphy of Local L-Functions in Split Spinor Groups

The following is Conjecture 7.1 of [20]. Our main result will be a proof of this con-
jecture for Levi subgroups in GSpin groups. Notation is the same as in Section 3.

Conjecture 5.1 Assume that σ is tempered. Then for 1 ≤ i ≤ m

L(s, σ, ri)

is holomorphic for <(s) > 0.

Remark 5.2 It is enough to prove the conjecture for σ in discrete series since the
L-functions for tempered σ are products of those for discrete series σ by Proposi-
tion 3.6.

This conjecture is a theorem in the following cases (cf. [20]).

Proposition 5.3 If m = 1, then L(s, σ, r1) is holomorphic for <(s) > 0.

Proposition 5.4 If m = 2 and the second L-function is of the form

L(s, σ, r2) =
∏

j

(1− a jq
−s)−1,

(possibly an empty product) with all a j ∈ C of absolute value one, then the first L-
function L(s, σ, r1) is holomorphic for <(s) > 0.

The assumption of the above proposition holds in particular when r2 is one-
dimensional.

Proposition 5.5 Assume σ to be unitary supercuspidal. Then L(s, σ, ri) is holomor-
phic for <(s) > 0, 1 ≤ i ≤ m. In fact, each L(s, σ, ri) is a product (possibly empty) as
in Proposition 5.4 with |a j | = 1. Moreover, L(s, σ, ri) = 1 if i ≥ 3.

We now look at GSpin groups. The complex dual of a Levi subgroup of the form
described in 2.7 is isomorphic to

GLn1 (C)× GLn2 (C)× · · · × GLnk (C)× GSp2l(C)

if m ′ = 2l + 1 and

GLn1 (C)× GLn2 (C)× · · · × GLnk (C)× GSO2l(C)

if m ′ = 2l. This is a Levi subgroup in GSp2(n1+···+nk+l)(C) if m ′ = 2l + 1 or in
GSO2(n1+···+nk+l)(C) if m ′ = 2l, respectively.

By looking at matrices we get the following description of r in the case of a maxi-
mal Levi.
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Proposition 5.6 Let M be a maximal Levi subgroup in GSpinm of the form GLn×
GSpinm ′ , where m = 2n + m ′ and m ′ 6= 2. Denote the standard representations of
the groups GLn(C), GSp2l(C), and GSO2l(C) by ρn, R1

2l, and R2
2l, respectively and let µ

be the multiplicative character defining GSp2l or GSO 2l in each case. Then the adjoint
action of the complex dual of this Levi on the Lie algebra of the unipotent radical of a
parabolic containing this dual Levi may be written as follows.

(a) Assume m ′ = 2l + 1 and l ≥ 1. Then, r = r1 ⊕ r2 and r1 = ρn ⊗ R̃1
2l while

r2 = Sym2 ρn ⊗ µ−1. If l = 0, then r = r1 and r1 = Sym2 ρn ⊗ µ−1. (If l = 1
note that GSpin3 is GL2 and its dual is GSp2(C) = GL2(C).)

(b) Assume m ′ = 2l and l ≥ 2. Then, r = r1 ⊕ r2 and r1 = ρn ⊗ R̃2
2l while r2 =

∧2ρn ⊗ µ−1. If l = 0, then r = r1 and r1 = ∧2ρn ⊗ µ−1. Note that we are not
allowing the case l = 1 (cf. 2.8).

We now state our final result.

Theorem 5.7 Let M = GLn(F)×GSpinm(F) where F is a non-archimedean local field
of characteristic zero. Let π1 ⊗ π2 be an irreducible admissible generic representation of
M which is in the discrete series. For i = 1, 2, let ri ’s be as in the above proposition
and let L(s, π1 ⊗ π2, ri) denote the local L-functions defined via the Langlands-Shahidi
method as in Section 3.

(a) The local L-function L(s, π1 ⊗ π2, r1) is holomorphic for <(s) > 0.
(b) The local L-function L(s, π1 ⊗ π2, r2) is holomorphic for <(s) > 0.

Remark 5.8 Note that these L-functions for non-maximal Levi subgroups M are
defined as products of the maximal cases (cf. 3.6). Also, the holomorphy of the
above L-functions for Levi subgroups of GSpin groups imply the same about the L-
functions for arbitrary Levi subgroups in the split spinor groups by Remark 3.7 since
they have the same derived group.

Moreover, we may take the representation of M to be tempered since the L-func-
tions are then products of those for discrete series by Proposition 3.6.

Proof Note that the second L-function in either of the two cases of Proposition 5.6
is independent of π2 and only yields symmetric square or exterior square L-function
for π1 (twisted by a character which is unitary) on GLn. Both of these L-functions
can be obtained from certain Levi subgroups in other classical groups in which case
we already know the result: the Siegel Levi in SO2n+1 has m = 1 (cf. Proposition 5.3)
and gives the symmetric square L-function while the Siegel Levi in Sp2n has m = 2
and its second L-function gives the exterior square L-function. See [21] for more
details about these L-functions.

As for the first L-function in each case the same arguments as in Section 4 of [6]
work. Theorems 4.4 and 4.5 of our Section 4 are two of the ingredients one needs in
order for those arguments to work out. We now give a summary of those arguments
for completeness and refer to Section 4 of [6] for the details.
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Replacing π2 by its contragredient, denote the first L-function by L(s, π1 × π2).
(This is the Rankin-Selberg product of π1 and π2.) We also denote the γ-factor defin-
ing L(s, π1 × π2) by γ(s, π1 × π2) (cf. Definition 3.3).

Both π1 and π2 are discrete series representations. Assume that π1 is a subrepre-
sentation of the induced representation from σ1 ⊗ σ2 ⊗ · · · ⊗ σb to GLn(F). By the
results of Bernstein and Zelevinsky [3], [29], we know that σi = σ0⊗| det(·)|(b+1)/2−i

where σ0 is a unitary supercuspidal representation of some GLt (F) with n = bt .
Moreover, assume that π2 is a subrepresentation of the induced representation from
ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk ⊗ τ , where ρ j is a representation of GLn j (F) and τ is one of
GSpinm ′(F) with 2(n1 + n2 + · · · + nk) + m ′ = m. Proposition 3.6 then implies the
following:

(2) γ(s, π2 × π2) =
b∏

i=1

γ(s, σi × τ ) ·
b∏

i=1

k∏
j=1

γ(s, σi × ρ j)γ(s, σi × ρ̃ j).

Here ρ̃ j denotes the contragredient of ρ j and the two sides of the above equation are
rational functions in q−s where q denotes the residual characteristic. The L-function
L(s, π1 × π2) is the inverse of the numerator of the left hand side and our objective is
hence to prove that γ(s, π1 × π2) 6= 0 for <(s) > 0.

Write ρ j = ρ0, j ⊗ | det(·)|ν j where ρ0, j is unitary supercuspidal and ν j ∈ R. By
Proposition 3.8, the right hand side of (2) can be written as

b∏
i=1

γ
(

s + (b + 1)/2− i, σ0 × τ
)

·
b∏

i=1

k∏
j=1

γ
(

s + (b + 1)/2− i + ν j , σ0 × ρ0, j

)
γ
(

s + (b + 1)/2− i − ν j , σ0 × ˜ρ0, j

)
.

(3)

We now show that the above product is non-zero for <(s) > 0 by carefully studying
each of the two terms in it. Since both σ0 and τ are unitary supercuspidal, Propo-
sition 3.4 and Remark 3.5 imply that the first term of the above product is, up to a
monomial in q−s, equal to

(4)
b∏

i=1

L
(

s + (b + 1)/2− i − 1, σ0 × τ
)

L
(

s + (b + 1)/2− i, σ0 × τ
) =

L
(

s− (b + 1)/2, σ0 × τ
)

L
(

s + (b− 1)/2, σ0 × τ
) ,

which is non-zero since <
(

s + (b − 1)/2
)
> 0 if <(s) > 0 and L(s, σ0 × τ ) is

holomorphic for <(s) > 0 by Proposition 5.5. However, the specific term appearing
in the numerator is quite important since it may cancel possible zeros coming from
the other term in certain cases (cf. Example 5.9).

As for the second product in (3), one first observes that one may assume, without
loss of generality, that ρ0, j ' σ0 and σ0 are self-contragredient (cf. [6, p. 573]). The
idea of the proof is to show that there are very specific values that ν’s can have in
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order for the representation induced from ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk ⊗ τ to have a discrete
series subrepresentation and these are exactly what one needs for the zeros of the
numerator and the denominator of this product to cancel out. To do this one uses
the fact that for σ0 unitary supercuspidal and π2 in discrete series, we know that
L(s, σ0 × π2) is holomorphic for <(s) > 0. To see this note that in this case we
have two L-functions (m = 2) and the second one (which only depends on σ0) is of
the form in Proposition 5.5 and hence Proposition 5.4 implies that L(s, σ0 × π2) is
holomorphic for <(s) > 0.

Define a σ0-chain (or segment) as a sequence of representations of the form σ0 ⊗
| det(·)|ν j with ν j ∈ R and ν j − ν j−1 = 1. One then uses Theorems 4.4 and 4.5 along
with the main tool mentioned above to show that only specific types of chains or
pairs of chains (“regular” and “singular”) can occur and the values of ν’s are always
integers or half integers. This will show that all the possible poles of the L-function
coming from the second product cancel out with zeros coming from either the second
product or possibly the first one. The process of cancellation of zeros in this argument
is a very delicate one (cf. Example 5.9). We refer to Section 4 of [6] for details.

Following a suggestion by the referee we include the following example in the
argument of the proof in order to indicate how delicate the proof could be.

Example 5.9 Consider the following special case of the above theorem. Assume
that π1 is the Steinberg representation, i.e., it is the irreducible subrepresentation of
the representation of GLn(F) induced from

σ0| det(·)|
b−1

2 ⊗ σ0| det(·)|
b−3

2 ⊗ · · · ⊗ σ0| det(·)|−
b−1

2

and π2 is an irreducible subrepresentation of the representation of GSpinm(F) in-
duced from

σ0| det(·)|b ⊗ σ0| det(·)|b−1 ⊗ · · · ⊗ σ0| det(·)| ⊗ τ ,

where σ0 is a self-contragredient unitary supercuspidal representation of GLt (F).
(We have k = b and ν j = b + 1 − j for each j.) Here, (σ0, τ ) satisfy (C1), namely,
the representation induced from σ0| det(·)|s ⊗ τ is reducible at s = 1 (cf. [6, Defini-
tion 4.10]).

As before, the first product is, up to a monomial in q−s, equal to

(5)
L
(

s− (b + 1)/2, σ0 × τ
)

L
(

s + (b− 1)/2, σ0 × τ
) .
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Similarly, the second product is, up to a monomial in q−s, equal to

b∏
i=1

b∏
j=1

L(s + b+1
2 + b− i − j, σ0 × σ0)

L(s + b+1
2 + b + 1− i − j, σ0 × σ0)

·
L(s− b+1

2 + 1− i + j, σ0 × σ0)

L(s− b+1
2 − i + j, σ0 × σ0)

=
b∏

i=1

L
(

s + (b + 1)/2− i, σ0 × σ0

)
L
(

s + (b + 1)/2 + b− i, σ0 × σ0

) · L
(

s− (b + 1)/2− i, σ0 × σ0

)
L
(

s + (b− 1)/2− i, σ0 × σ0

)
=

L
(

s + (b− 1)/2, σ0 × σ0

)
L
(

s− (b + 1)/2, σ0 × σ0

) · b∏
i=1

L
(

s− (b + 1)/2− i, σ0 × σ0

)
L
(

s + (b− 1)/2 + i, σ0 × σ0

) .
Observe that the term L

(
s− (b + 1)/2, σ0×σ0

)
could be a potential problem. To get

around this problem, one uses the fact that the inverse of this L-function divides the
inverse of the numerator of (5) (cf. [6, Lemma 4.20]).

The following two results are special cases of Theorem 5.7 and have already been
used in [12].

Corollary 5.10 Let F denote a non-archimedean local field of characteristic zero as
before.

(a) Let σ1 be an irreducible admissible tempered (hence generic) representation of
GL3(F) and σ2 and σ3 be irreducible admissible tempered (hence generic) repre-
sentations of GL2(F). Then the triple product L-function

L(s, σ1 × σ2 × σ3)

is holomorphic for <(s) > 0.
(b) Let σ1 be an irreducible admissible tempered (hence generic) representation of

GL3(F) and σ2 be one of GL4(F). Then the L-function

L(s, σ1 ⊗ σ2, ρ3 ⊗ ∧2ρ4)

is holomorphic for <(s) > 0. Here ρn denotes the standard representation of
GLn(C).

Proof These correspond to the cases D5−2 and D6−3 of [18]. For part (a) consider
the maximal Levi subgroup GL3×GSpin4 in GSpin10 with the following Dynking
diagram where we have omitted the simple root determining this maximal Levi.

α1

c
α2

c c
c
α4

c
α5

�
�
��

Z
Z
ZZ
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In this case there are two L-functions (m = 2) and the first one gives the triple
product L-function for σ1, σ2, and σ3. Hence we know the holomorphy by our main
theorem.

Similarly, for part (b) consider the maximal Levi subgroup GL3×GSpin6 in
GSpin12 with the following Dynkin diagram where we have again omitted the simple
root determining the maximal Levi.

α1

c
α2

c c
α4

c
c
α5

c
α6

�
�
��

Z
Z
ZZ

Again, there are two L-functions (m = 2) in this case and the first one gives the
desired L-function in part (b). Although clear from the diagram, we remark that the
derived group of GSpin6 is Spin6 which is nothing but SL4.
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