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Abstract. This paper explicitly describes the procedure of associating an automorphic rep-
resentation of PGSp(2n,A) with a Siegel modular form of degreen for the full modular
group�n = Sp(2n,Z), generalizing the well-known procedure forn = 1. This will show
that the so-called “standard” and “spinor”L-functions associated with such forms are ob-
tained as LanglandsL-functions. The theory of Euler products, developed by Langlands,
applied to a Levi subgroup of the exceptional group of typeF4, is then used to establish
meromorphic continuation for the spinorL-function whenn = 3.

1. Introduction

Let f be a Siegel modular form of degreen for the full modular group�n =
Sp(2n,Z). If f is an eigenfunction for the action of the Hecke algebra, then there
are twoL-functions associated withf . Leta0, a1, . . . , an be the Satake parameters
of f , and define thestandard L-function

L1(s, f ) =
∏
p

(
(1− p−s)

n∏
i=1

(1− aip
−s)(1− a−1

i p−s)

)−1

, (1)

and thespinor L-function

L2(s, f ) =
∏
p

( n∏
k=0

∏
1≤i1<...<ik≤n

(1− a0ai1 . . . aikp
−s)

)−1

. (2)

One goal of this note is to “explain” the definition of theseL-functions within the
general framework of automorphic representations. To do so, we first associate an
automorphic representation with the classical modular formf . We then identify the
aboveL-functions with certain LanglandsL-functions coming from two different
representations of the dual group. Langlands’ theory of Euler products will then
imply the following (cf. Sect. 4.6).
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Theorem. TheL-functionsL1(s, f ) andL2(s, f ) have meromorphic continuation
to all of C when n = 3.

We should remark that Böcherer has proved stronger results for the standard
L-functions (cf. [Bö]). Andrianov also gives all the analytic properties of spinor
L-function whenn = 2 in [An].

The procedure of associating an automorphic representation to a classical mod-
ular form is well known in the case of elliptic modular forms, see [Ge] Chapter
3 or [Bu, Sect. 3.6]. There, one associates with an eigenformf an automorphic
representationπf of GL(2,A), whereA denotes the adeles ofQ. If f has no char-
acter, thenπf will have trivial central character, thus descends to a representation
of PGL(2,A). In the higher dimensional case we will associate with an eigenform
f of degreen an automorphic representation of the group GSp(2n,A) which is
isomorphic to GL(2,A) if n = 1. Sincef will be assumed to have no character,
this is really a representation of PGSp(2n,A).

To be more precise, utilizing a strong approximation theorem, we first liftf to
a function�f onG(A), whereG = GSp(2n). We will assumef to be cuspidal,
so that�f lies in the cuspidal subspaceL2

0(G(Q)\G(A)). (Here we have to trans-
late the classical cusp condition into the group theoretic one.) Then letπ be the
subrepresentation of this space generated by�f . Thisπ may not be irreducible,
but if f is an eigenform, then all the irreducible components ofπ will turn out
to be isomorphic. This isomorphism class is the automorphic representationπf

associated withf . In Theorem 2 we shall describe its local components in terms
of Satake parameters (at the finite places) and Harish-Chandra parameters (at the
infinite place).

We have to go through some Hecke algebra computations to identify the clas-
sical Satake parameters of the eigenformf with the Satake parameters of the
local components ofπf which are spherical representations of the local groups
GSp(2n,Qp). The group theoretic Satake parameters can be taken to be in the
maximal torus in the dual group ofG which isĜ = GSpin(2n + 1,C). Since we
have a representation with trivial central character, the Satake parameters will in
fact be elements of its derived group Spin(2n+ 1,C).

This latter group has two distinguished finite-dimensional representations,
namely the projection onto SO(2n + 1,C) which we denote by�1, and the 2n-
dimensional spin representation�2, the smallest genuine representation (not factor-
ing through�1) of this group.We use the weight structure of these finite-dimensional
representations to determine the form of the standard Euler factor associated with
�1 and�2. It turns out that these Euler factors are precisely the same as the ones in
(1) and (2). In other words, the classicalL-functions identify with standard Lang-
landsL-functions coming from the representations�1 and�2 of the dual group (see
Theorem 3).

Having established this identification, one can apply results from representation
theory to classical modular forms. For modular forms of degree 3, the underlying
group GSp(6) can be embedded, as a Levi, in a Chevalley group of typeF4. We
then make use of Langlands’ method developed in [La] to prove the meromorphic
continuation of the spinL-function forn = 3 (cf. Corollary 1).
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2. Notation

The right group for handling Siegel modular forms (of degreen) in the context of
automorphic representations is

G = GSp(2n) = {g ∈ GL(2n) : ∃ µ(g) ∈ GL(1) gJ tg = µ(g)J },
where

J =
(

1n

−1n

)
, 1n then× n identity matrix.

If g =
(
A B

C D

)
, then the conditions are equivalent to

A tD − B tC = µ(g)1, A tB = B tA, C tD = D tC.

The functionµ is called the multiplier homomorphism. Its kernel is the group
Sp(2n) and there is an exact sequence

1−→ Sp(2n) −→ G −→ GL(1) −→ 1.

The centerZ of G consists of the scalar matrices, and the standard maximal torus
is

T = {diag(u1, . . . , un, v1, . . . , vn) : u1v1 = . . . = unvn �= 0}.
We often write an elementt ∈ T in the form

t = diag(u1, . . . , un, u
−1
1 u0, . . . , u

−1
n u0), ui ∈ GL(1); (3)

thenu0 = µ(t). We fix the following characters of the maximal torusT ⊂ G. If
t ∈ T is written in the form (3), then let

ei(t) = ui, i = 0,1, . . . , n.

These characters are a basis for the character lattice ofG,

X = Ze0 ⊕ Ze1 ⊕ . . .⊕ Zen.

We also fix the following cocharacters ofT :

f0(u) = diag(1, . . . ,1︸ ︷︷ ︸
n

, u, . . . , u︸ ︷︷ ︸
n

),

f1(u) = diag(u,1, . . . ,1︸ ︷︷ ︸
n

, u−1,1, . . . ,1︸ ︷︷ ︸
n

),

...

fn(u) = diag(1, . . . ,1, u︸ ︷︷ ︸
n

,1, . . . ,1, u−1︸ ︷︷ ︸
n

).
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Then these elements are aZ-basis for the cocharacter lattice ofG,

X∨ = Zf0 ⊕ Zf1 ⊕ . . .⊕ Zfn.

With the natural pairing〈 , 〉 : X ×X∨ −→ Z, we have

〈ei, fj 〉 = δij .

We now choose the following set of simple roots:

α1(t) = u−1
n−1un, . . . , αn−1(t) = u−1

1 u2, an(t) = u2
1u

−1
0 ; (4)

heret is written in the form (3). In other words,

α1 = en − en−1, . . . , αn−1 = e2 − e1, αn = 2e1 − e0.

The numbering of the simple roots is such that the Dynkin diagram is

· · · <• • • • •
α1 α2 αn−2 αn−1 αn

The corresponding coroots are

α∨1 = fn − fn−1, . . . α∨n−1 = f2 − f1, α∨n = f1. (5)

If we let R = {α1, . . . , αn} ⊂ X, R∨ = {α∨1 , . . . , α∨n } ⊂ X∨, then

(X,R,X∨, R∨)

is the root datum ofG = GSp(2n). The Cartan matrix is

〈αi, α
∨
j 〉 =




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2 −1

−2 2




.

With our choice of simple roots, we get the Borel subgroupB = TN , where

N consists of matrices of the form

(
A 0
0 tA−1

)(
1 B

0 1

)
, with A ∈ GL(n) lower

triangular unipotent andB symmetric. (Note that some authors use a different set
of simple roots that results inA being upper triangular as was pointed out by the
referee.) The torusT acts on the Lie-algebran of N by the adjoint representation
Ad. It is easy to compute the modular factorδB(t) = det(Adn(t)). If t is given in
the form (3), then

δB(t) = u
−n(n+1)/2
0 u2

1u
4
2 · . . . · u2n

n . (6)
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3. Local representations

In Theorem 2 we shall describe the local components of an automorphic repre-
sentation associated with a classical Siegel modular form. This is done in terms
of Satake parameters at the finite places, and in terms of the weight (or Harish-
Chandra parameters, if the weight is large enough) at the archimedean place. In
the following sections we shall therefore collect all the required facts about local
representations.

Notation. In Sects. 3.1 through 3.4,F is ap-adic field,O its ring of integers,ω ∈ O
a generator of the maximal ideal, andq = *O/ωO. The symbolsG, T , . . . denote
F -points of the underlying algebraic groups. We letK = GSp(2n,O).

Section 3.5 deals with the archimedean place, i.e., the underlying local field is
R.

3.1. The Satake isomorphism for GSp(2n)

The Satake isomorphism for a reductivep-adic group is nicely described in [Ca]. Let
H(G,K) be the unramified Hecke algebra ofG, consisting of compactly supported
functionsf : G → C which are left and rightK-invariant. The product inH(G,K)

is given by convolution

(f ∗ g)(x) =
∫
G

f (xy)g(y−1) dy.

Let◦T := T (O). Then we also have the Hecke algebraH(T , ◦T ). Special elements
in this Hecke algebra are

X0 := char
(
diag(O∗, . . . ,O∗, ωO∗, . . . , ωO∗)

)
,

X1 := char
(
diag(ωO∗,O∗, . . . ,O∗, ω−1O∗,O∗, . . . ,O∗)

)
,

...

Xn := char
(
diag(O∗, . . . ,O∗, ωO∗,O∗, . . . ,O∗, ω−1O∗)

)
,

where “char” stands for characteristic function. It is easily seen that

Xk
0 = char

(
diag(O∗, . . . ,O∗, ωkO∗, . . . , ωkO∗)

)
, k ∈ Z,

and similarly for the otherXi . It is then clear that

H(T , ◦T ) = C[X±1
0 , X±1

1 , . . . , X±1
n ].

Now, for an elementf ∈ H(G,K), the Satake transform is defined by

(Sf )(t) = |δB(t)|1/2
∫
N

f (tn) dn = |δB(t)|−1/2
∫
N

f (nt) dn.
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Sf is an element ofH(T , ◦T ), and in factS defines an isomorphism

S : H(G,K)
∼−→ H(T , ◦T )W .

HereW denotes the Weyl group ofG, which acts naturally on the torus and on
H(T , ◦T ), and we take invariant elements.

Assume now thatf = char(KMK) with KMK = ∐MiK. Because of the
Iwasawa decompositionG = BK we may assume that

Mi =
(
Ai Bi

0 ωdi0 tA−1
i

)
with Ai =




ωdi1 0
. . .

∗ ωdin


 . (7)

Hereω is a prime element and thedij are integers. Note thatdi0 does not depend
on i, since it equals the valuation ofµ(M).

Lemma 1. With f as above, we have

Sf = qδn(n+1)/4 Xδ
0

∑
i

n∏
j=1

(q−jXj )
dij .

where δ is the valuation of µ(M).

Proof. We have to compute

(Sf )(t) = |δB(t)|1/2
∑
i

∫
N

1MiK(tn) dn,

where we may assumet = diag(ωk1, . . . , ωkn, ω−k1+k0, . . . , ω−kn+k0). Consider∫
N

1MiK(tn) dn for fixed i. We havetn ∈ MiK if and only if n ∈ t−1MiK. It
is clear that we can find such ann only if t−1Mi has units on the diagonal, i.e.,
if kj = dij for all j . Assuming this is the case, then withn′ := t−1Mi ∈ N our
integral equals ∫

N

1n′K(n) dn =
∫
N

1K(n) dn = 1.

We have proved that

∫
N

1MiK(tn) dn =



1 if kj = dij for all j = 0,1, . . . , n,

0 otherwise.

With the characteristic functionsXj defined above, this may be written as(
t �−→

∫
N

1MiK(tn) dn

)
= X

di0
0 X

di1
1 · . . . ·Xdin

n . (8)

It follows from (6) that

|δB(t)|1/2 = qk0n(n+1)/4q−k1−2k2−...−nkn .

Multiplying this by the function (8), we may replacekj by dij , and the assertion
follows.  !
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3.2. Spherical representations

An irreducible admissible representation ofG is calledspherical if it contains a
non-zero vector fixed byK. All the spherical representations ofG are obtained
as follows. Letχ0, . . . , χn be unramified characters ofF ∗ (i.e., homomorphisms
F ∗ → C∗ which are trivial onO∗). They define an unramified character of the
Borel subgroupB = TN which is trivial onN and which, onT , is given by

t �−→ χ0(u0)χ1(u1) · . . . · χn(un), (9)

with t ∈ T of the form (3). Normalized induction toG yields a representation
which has a unique spherical constituent. We denote this spherical representation
by

π(χ0, χ1, . . . , χn).

The isomorphism class of this representation depends only on the unramified char-
acters modulo the action of the Weyl group. It is further known that each spherical
representation is obtained in this way. Thus there is a bijection between unramified
characters ofT modulo the action of the Weyl group, and isomorphism classes of
spherical representations ofG.

Each unramified character ofF ∗ is determined by its value on a prime ele-
mentω ∈ F . This value may be any non-zero complex number. With theSatake
parameters bi := χi(ω), the character (9) is thus also determined by the vec-
tor (b0, b1, . . . , bn) ∈ (C∗)n+1. The Weyl group acts on this complex torus, and
we see that unramified representations ofG are parameterized by the orbit space
(C∗)n+1/W . In fact, the Satake isomorphism

S : H(G,K)
∼−→ C[X±1

0 , X±1
1 , . . . , X±1

n ]W

identifies the Hecke algebra with the coordinate ring of(C∗)n+1/W . Each point
(b0, . . . , bn) ∈ (C∗)n+1/W determines a character, i.e. an algebra homomorphism
C[X±1

0 , . . . , X±1
n ]W → C, by mappingXi tobi . Via S this also defines a character

of H(G,K), which is nothing but the action ofH(G,K) on the one-dimensional
space of spherical vectors inπ(χ0, . . . , χn).

These well-known facts may be summarized in the following commutative
diagram, in which all the maps are bijections:

{spherical representations} −−−−→ HomAlg(H(G,K),C)� �
{unramified characters}/W ←−−−− (C∗)n+1/W

The left arrow is induction and then taking the spherical constituent, the top arrow
is the action ofH(G,K) on the space of spherical vectors, the map on the right
comes from the identificationH(G,K) # C[X±1

0 , . . . , X±1
n ]W , and the bottom

arrow assigns to the Satake parameters(b0, . . . , bn) the unramified character with
χi(ω) = bi .
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Lemma 1 can now be restated in the following way. Letv be a spherical vector
in π := π(χ0, . . . , χn), and letf = 1KMK be the element from Lemma 1. Then

π(f )v = qδn(n+1)/4 bδ0

∑
i

n∏
j=1

(q−j bj )
dij v, wherebj = χj (ω). (10)

Clearly the representation induced from the character (9) has central character
χ2

0χ1 . . . χn. This character is trivial if and only if the Satake parameters satisfy

b2
0b1 · . . . · bn = 1. (11)

Thus, exactly these parameters give spherical representations of the group
PGSp(2n, F ).

3.3. Dual groups

In Sect. 2 we described the root datum

(X,R,X∨, R∨)

of G = GSp(2n). By definition, the dual group̂G = GSpin(2n + 1,C) has root
datum

(X′, R′, X′∨, R′∨) = (X∨, R∨, X,R).

Let e′0, . . . , e′n be a basis ofX′ such that

e′i = fi

under the identificationX′ = X∨, and letf ′
0, . . . , f

′
n be a basis ofX′∨ such that

f ′
i = ei

under the identificationX′∨ = X. The complex torus(C∗)n+1 of the previous
section may be viewed as the maximal torusT̂ ⊂ Ĝ. Elements ofT̂ /W are in
one-one correspondence with semisimple conjugacy classes inĜ. By the previous
section, we have a correspondence between spherical representations ofG and
those semisimple conjugacy classes. Ifχ is an unramified character ofT defining
a spherical representation, andt̂ ∈ T̂ is the associated parameter, thenχ andt̂ are
related by the general relation

χ(ϕ(ω)) = ϕ(t̂) for all ϕ ∈ X∨ = X′ (12)

(see [GS] p. 26). It is clear that eacht̂ ∈ T̂ can be written uniquely as

t̂ =
n∏

i=0

f ′
i (ti ), ti ∈ C∗. (13)

We have the pairing〈e′i , f ′
j 〉 = δij , and thusti = e′i (t̂ ). Therefore puttingϕ = e′i =

fi in (12) yieldsbi = ti . We proved the following.
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Lemma 2. Let π = π(χ) be a spherical principal series representation of G =
GSp(2n, F ). Let b0, b1, . . . , bn be the Satake parameters of π , as in 3.2. Then the
associated semisimple conjugacy class in GSpin(2n+ 1,C) is represented by

t̂ =
n∏

i=0

f ′
i (bi).

SetG := PGSp(2n, F ) = G/C, whereC is the center ofG. The dual group ofG
is

Ĝ = Spin(2n+ 1,C) ⊂ GSpin(2n+ 1,C),

which is also the derived group of̂G. The elementt ∈ T̂ will correspond to a
representation ofG with trivial central character, i.e., to a representation ofG, if
and only if it lies in

T̂ := T̂ ∩ Spin(2n+ 1,C),

the maximal torus of Spin(2n+ 1,C).

3.4. Local Euler factors

For a spherical representationπ ofGwith parameter̂t ∈ T̂ and a finite-dimensional
representation

� : Spin(2n+ 1,C) −→ GL(m,C),

Langlands defines the local Euler factorL(s, π, �) = det
(
1− �(t̂)q−s

)−1
. In this

section we are going to compute this factor for the “projection representation”

�1 : Spin(2n+ 1,C) −→ SO(2n+ 1,C), (14)

and for the 2n-dimensional spin representation�2. Similar computations can also
be found in [As].

The projection representation. One can find the weight structure of the representa-
tion �1 in [FH]. All the weight spaces of this(2n+ 1)-dimensional representation
are one-dimensional. In the notation of the previous section the weights are

e′1, . . . , e′n, 0, −e′1, . . . , −e′n.

The eigenvalues of an operatorρ(t̂) are therefore 1 and

e′i (t̂ )±1, i = 1, . . . , n.

With t̂ as in Lemma 2, we gete′i (t̂ ) = bi . This proves the following.

Lemma 3. If π is a spherical representation of Ḡ with Satake parameters
b0, b1, . . . , bn as in 3.2, then

L(s, π, �1)
−1 = (1− q−s)

n∏
i=1

(1− biq
−s)(1− b−1

i q−s).
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The spin representation. Again from [FH], the 2n-dimensional spin representation
�2 of Spin(2n+ 1,C) has highest weight12(e

′
1 + . . .+ e′n). Indeed, all the weight

spaces are one-dimensional, and the weights of�2 are

c1e
′
1 + . . .+ cne

′
n

2
, ci ∈ {±1}. (15)

Let such a weight be given. Define a characterη of T̂ by

η(t̂) = t0

n∏
i=1
ci=1

ti , if t̂ =
n∏

i=0

f ′
i (ti ).

We claim thatη coincides with the character (15) on̂T , the maximal torus of
Spin(2n + 1,C). An elementt̂ as above lies in this maximal torus if and only if
t20 t1 · . . . · tn = 1. Assuming this relation, we have

(c1e
′
1 + . . .+ cne

′
n)(t̂) =

n∏
i=1

(
e′i (t̂ )
)ci = n∏

i=1

t
ci
i

= t20

n∏
i=1

t
ci+1
i = t20

n∏
i=1
ci=1

t2i = (2η)(t̂),

and it follows that indeed12(c1e
′
1 + . . . + cne

′
n) = η on T̂ . We can thus easily

compute the eigenvalues of�2(t̂), and get the following lemma.

Lemma 4. If π is a spherical representation of Ḡ with Satake parameters
b0, b1, . . . , bn as in 3.2, then

L(s, π, �2)
−1 =

n∏
k=0

∏
1≤i1<...<ik≤n

(1− b0bi1 . . . bik q
−s).

3.5. Lowest weight representations for PGSp(2n,R)

In this section we shall construct a class of lowest weight representations of
PGSp(2n,R), which appear as the infinite component in the automorphic rep-
resentation attached to a holomorphic Siegel modular form.

The Lie algebra of Sp(2n,R) is explicitly given by

g = {X ∈ M(2n,R) : XJ + J tX = 0
}

=
{(

A B

C D

)
∈ M(2n,R) : B = tB, C = tC, A = −tD

}
. (16)

The standard maximal compact subgroupK∞ of Sp(2n,R) is

K∞ =
{(

A B

−B A

)
∈ GL(2n,R) : A tA+ B tB = 1, A tB = B tA

}
. (17)
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We haveK∞ # U(n) via

(
A B

−B A

)
�−→ A+ iB. The Lie algebra ofK∞ is

k =
{(

A B

−B A

)
∈ M(2n,R) : A = −tA, B = tB

}
.

This is also the 1-eigenspace of the Cartan involutionθX = −tX. The (−1)-
eigenspace is

p =
{(

A B

B −A

)
∈ M(2n,R) : A = tA, B = tB

}
,

so thatg = k⊕ p. It is easy to see thatpC = p+
C
⊕ p−

C
, with

p±
C
=
{(

A ±iA

±iA −A

)
∈ M(2n,C) : A = tA

}
. (18)

Each ofp±
C

is an abelian subalgebra ofgC, we have[kC, p
±
C
] ⊂ p±

C
, and

gC = p+
C
⊕ kC ⊕ p−

C
.

In the complexified Lie-algebrakC of K let

Ti = −i

(
0 Di

−Di 0

)
, (19)

whereDi is the diagonal matrix with entry 1 at position(i, i), and zeros elsewhere.
Thenh = RT1 + . . . + RTn is a compact Cartan subalgebra ofgC. Let ei be the
linear form onhC which sendsTi to 1, andTj to 0 for j �= i. Then the following
is a system of positive roots for(gC, hC):

2ej , 1≤ j ≤ n,

ej + ek, 1≤ j < k ≤ n, (20)

ej − ek, 1≤ j < k ≤ n

(the simple roots aree1 − e2, . . . , en−1 − en, 2en). In fact,p+
C

is spanned by the
root spaces for the first two types of roots. IfDj is as above, then(

Dj iDj

iDj −Dj

)
, 1≤ j ≤ n,

spans the root space for the root 2ej , and ifEjk is the matrix with entry 1 at positions
(j, k) and(k, j), and zeros elsewhere, then(

Ejk iEjk

iEjk −Ejk

)
, 1≤ j < k ≤ n,

spans the root space for the rootej + ek. These roots are thenon-compact positive
roots. The other positive roots arecompact; the root space ofej − ek is spanned by
the element (

Fjk −iEjk

iEjk Fjk

)
, 1≤ j < k ≤ n,
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whereFjk is the matrix with entry 1 at position(j, k), entry−1 at position(k, j),
and zeros elsewhere.

Let k be a positive integer (it will be the weight of a Siegel modular form in our
case). We shall construct a lowest weight representation ofG with lowest weight
k(e1 + . . .+ en). Let<k be the character ofK given by

<k(κ) = j (κ, I )−k,

wherej (g, Z) = det(CZ+D) is the classical automorphic factor,g =
(
A B

C D

)
∈

G, andZ is in the Siegel upper half plane (< is a character becauseK is the stabilizer
of I = diag(i, . . . , i) under linear fractional transformations). Letξk = d<k be
the differential, complexified to a linear formkC → C. Explicitly,

ξk(Tj ) = k, j = 1, . . . , n,

ξk(Xej−el ) = 0 for all j �= l.

Because of[kC, p
−
C
] ⊂ p−

C
, the characterξk can be extended to a character of

kC + p−
C

. Consider

Vk = U(gC)⊗U(kC+p−
C
) Cξk .

HereCξk = C with the action ofkC + p−
C

given byξk. If v0 denotes the special
vector 1⊗ 1 ∈ Vk, thenTjv0 = kv0, andv0 is annihilated by all negative roots.
Thus we have a representation ofgC of lowest weightk(e1 + . . . + en). It is also
clear that

Vk = U(p+
C
)v0.

Vk is in fact a (gC,K)-module, and globalizes to a unitary representation of
Sp(2n,R) which in the following we shall denote byπk (it depends only on the
positive integerk). The center of Sp(2n,R) consists of only two elements, and it is
easy to see that the central character ofπk is given by(−1)nk. Thus, ifnk is even,
πk descends to a representation of PSp(2n,R). Assuming this is the case, we get
a representation of PGSp(2n,R) by inducingπk from the subgroup PSp(2n,R)

(of index 2). This new representation shall also be denoted byπk. It has a lowest
weight vector of weightk(e1 + . . . + en), and a highest weight vector of weight
−k(e1 + . . .+ en).

By Harish-Chandra, the discrete series representations of Sp(2n,R) are param-
eterized by elements in the weight lattice which do not lie on a wall, modulo the
action of the Weyl group ofK (see, for instance, [Kna] Theorem 9.20). Ifλ is such
a Harish-Chandra parameter, then the lowestK-type of the corresponding discrete
series representation is given by the Blattner parameter

C = λ+ δnc− δc,

whereδnc (resp.δc) is half of the sum of the non-compact (resp. compact) positive
roots; here “positive” means with respect to the Weyl chamber in whichλ lies.
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The choice (20) of positive roots leads to theholomorphic discrete series rep-
resentations. The corresponding Harish-Chandra parameters are of the form

λ = a1e1 + . . .+ anen, ai ∈ Z, a1 > . . . > an > 0.

The relation with the Blattner parameter is

C = λ+
n∑

j=1

jej .

We shall be particularly interested in the discrete series representation with Harish-
Chandra parameter

(k − 1)e1 + . . . (k − n)en,

wherek > n is an integer; it has the lowestK-typeke1+ . . .+ ken, and must thus
coincide with the representationπk constructed above. Ifk = n, then the Harish-
Chandra parameter comes to lie on a wall and this identifies ourπk, k = n, as a
limit of discrete series. Ifk < n, thenπk is neither a discrete series representation,
nor a limit of them.

4. Siegel modular forms

For basic facts about classical Siegel modular forms we refer to [AZ], [Fr1], or
[Kl].

4.1. Lifting of Siegel modular forms

Siegel modular forms of degreen are certain holomorphic functions on the Siegel
upper half planeHn, which by definition is the complex manifold consisting of
complex symmetricn × n matrices with positive definite imaginary part. Strong
approximation allows one to regard Siegel modular forms of degreen as functions
onG(A), whereG = GSp(2n), and where the ground field isQ.

Letf be a Siegel modular form of weightk and degreen. We shall assume that
f is a modular form with respect to the full modular group�n = Sp(2n,Z), i.e.,
f
∣∣
k
γ = f for all γ ∈ �n, where

(f |kh)(Z) = µ(h)nk/2 j (h, Z)−k f (h〈Z〉) for h ∈ G+∞, Z ∈ Hn

(hereµ is the multiplier,j (h, Z) = det(CZ +D) for h =
(
A B

C D

)
, andh〈Z〉 =

(AZ + B)(CZ + D)−1). We remark that this operation differs from the classical
one used in [An] by a factor. We do so to make the center ofG(A) act trivially.
More precisely, the classical operation is

(f ‖k h)(Z) = det(h)k−(n+1)/2j (h, Z)−kf (h〈Z〉).
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The relation between the two operations is

f ‖k h = det(h)(k−n−1)/2f |kh for all h ∈ G+∞. (21)

To f is associated a function�f : G(A) → C as follows. One uses strong
approximation for Sp(2n) (cf. [Kne]) to show that

G(A) = G(Q)G(R)+
∏
p<∞

G(Zp),

whereG(R)+ denotes those elements ofG(R)which have positive multiplier.Write
an elementg ∈ G(A) as

g = gQg∞k0 with gQ ∈ G(Q), g∞ ∈ G+∞, k0 ∈ K0, (22)

whereK0 =∏p<∞Kp with Kp = G(Zp). Then we define

�f (g) = (f |kg∞)(I ), (23)

whereI = diag(i, . . . , i) ∈ Hn. This is well-defined because of the transformation
properties off .

The mapf �→ �f injects the space of modular forms of weightk into a space
of functions� onGA having the following properties:

i) �(�g) = �(g) for � ∈ G(Q),
ii) �(gk0) = �(g) for k0 ∈ K0,
iii) �(gk∞) = �(g)j (k∞, I )−k for k∞ ∈ K∞,
iv) �(gz) = �(g) for z ∈ Z(A).

HereZ # GL(1) is the center of GSp(2n), andK∞ # U(n) is the standard
maximal compact subgroup of Sp(2n,R) (and is equal to the stabilizer ofI under
linear fractional transformations; see also the next section).

Lemma 5. If f ∈ Sk(�n), then the automorphic form �f is cuspidal, i.e.,

∫
N(Q)\N(A)

�f (ng) dn = 0 for all g ∈ G(A)

for each unipotent radical N of each proper parabolic subgroup of G.

Proof. It is enough to verify the cusp condition for the standard maximal parabolics.
If P = MN is one of those, then by the Iwasawa decomposition we may assume
g ∈ M(A). Using strong approximation forM(A), we may further assume that
g ∈ M+∞ := M(R)∩G+∞. LetV be the intersection of the unipotent radicals of all
standard maximal parabolics. Clearly it is enough to show that∫

V (Q)\V (A)

�f (ng) dn = 0.
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NowV consists of all elements of the form

(
1 v

1

)
with v ∈ V ′, whereV ′ is the set

of symmetricn×n matrices with non-zero entries only in last row and last column
(thusV # V ′ # Gn

a). This is easy to see from the fact that a root spaceXα belongs
to V if and only if α = c1α1 + . . .+ cnαn with all ci > 0 (andαi as in (4)). With
Z := g〈I 〉 one gets∫

V (Q)\V (A)

�f (ng) dn =
∫

V (Z)\V (R)

�f (ng) dn

=
∫

V (Z)\V (R)

f (ng〈I 〉)j (ng, I )−k dn =
∫

V ′(Z)\V ′(R)

f (Z + v)j (g, I )−k dv.

At this point we use the Fourier expansion off :

f (Z) =
∑
R

cR exp(2πi tr(RZ)), Z ∈ Hn,

whereR runs over semi-integral, positive definite matrices (it is here where we use
the classical cusp condition). Thus∫

V (Q)\V (A)

�f (ng) dn =
∑
R

cR exp(2πi tr(RZ))j (g, I )−k

·
∫

V ′(Z)\V ′(R)

exp(2πi tr(Rv)) dv.

Using the fact thatR is non-degenerate, one checks that the map

v �→ exp(2πi tr(Rv))

is a non-trivial character ofV ′. Thus our integral is zero. !
The lemma shows that the mapf �→ �f gives a one-one correspondence

between the spaceSk(�n) of cusp forms of weightk, and a subspace of
L2

0(Z(A)G(Q)\G(A)), the space of cuspidal functions in

L2(Z(A)G(Q)\G(A)).

Also note that

�n\Hn # Z(A)G(Q)\G(A)/K. (24)

To see this, map an elementg = gQg∞k ∈ G(A) to g∞〈I 〉. Also, every point of
the left hand side of the isomorphism can be written asg∞〈I 〉 for someg∞ ∈ G+∞
which can in turn be mapped to the image ofg∞ in the right hand side.

If we start with a Haar measure onG(A) and take the induced measure on the
right side of (24), then the corresponding measure on the left side is induced from
(a suitable multiple of) the usual invariant volume elementd∗Z on Hn. In other
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words, if a�n-invariant functionf on Hn and aG(Q)-invariant function� on
Z(A)\G(A)/K are related by

f (g∞〈I 〉) = �(g∞) for all g∞ ∈ G+∞,

then ∫
�n\Hn

f (Z) d∗Z =
∫

Z(A)G(Q)\G(A)/K

�(g) dg =
∫

Z(A)G(Q)\G(A)

�(g) dg

(integrations taken over fundamental domains). We apply this to the function

�f1(g)�f2(g) = f1(g〈I 〉) f2(g〈I 〉) µ(g)nk |j (g, I )|−2k

= f1(Z) f2(Z) det(Y )k,

wheref1, f2 ∈ Sk(�n), and whereg〈I 〉 = X + iY for g ∈ G+∞. We obtain

∫
�n\Hn

f1(Z) f2(Z) det(Y )k d∗Z =
∫

Z(A)G(Q)\G(A)

�f1(g)�f2(g) dg. (25)

On the left, we have the classical Petersson scalar product, and the ordinaryL2

scalar product on the right. This proves the following.

Lemma 6. Upon suitable normalization of measures, the map f �→ �f from
Sk(�n) into L2

0(Z(A)G(Q)\G(A)) is an isometry.

4.2. Holomorphy and differential operators

We are going to express the holomorphy of the functionf on Hn in terms of the
annihilation of�f by certain differential operators. If� is a function onG(A)

which is smooth as a function ofG(R), and if X ∈ g, the real Lie-algebra of
Sp(2n,R), then we define as usual

(X�)(g) := d

dt

∣∣∣∣
0
�(g exp(tX)), g ∈ G(A).

This action ofg on smooth functionsG(A) → C extends to an action ofgC by
linearity. We have identifiedg with a space of matrices in (16).

The stabilizer ofI ∈ Hn (under linear fractional transformations) is the maximal
compact subgroupK∞ # U(n) of Sp(2n,R), given by (17). As in 3.5 we have
g = k⊕ p, wherek is the Lie algebra ofK, andp is the(−1)-eigenspace under the
Cartan involution. Consider the projection

ρ : Sp(2n,R) −→ Hn,

g �−→ g〈I 〉,
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which induces the homeomorphism Sp(2n,R)/K∞ # Hn. Its differential at the
identity

dρ : g −→ TIHn

has kernelk, and therefore induces an isomorphismp
∼−→ TIHn. If TIHn is natu-

rally identified with the space of symmetric complexn× n matrices, then a small
calculation shows that

dρ(X) = d

dt

∣∣∣∣
0

exp(tX)〈I 〉 = 2(B + IA) for X =
(
A B

B −A

)
∈ p.

Let J be the complex structure (multiplication withi) onTIHn. Carried over top,
it is given by

J

(
A B

B −A

)
=
(

B −A

−A −B

)
.

Now we havepC = p ⊗R C = p+
C
⊕ p−

C
, wherep±

C
is the(±i)-eigenspace ofJ .

Thus the elements ofp+
C

(resp.p−
C

) correspond to linear combinations of differential
operators

d

dzj
∈ TIHn ⊗R C

(
resp.

d

dz̄j

)
, (26)

wherezj = xj + iyj are coordinates onHn about the pointI . Explicitly, we have

p±
C
=
{(

A ±iA

±iA −A

)
∈ M(2n,C) : A = tA

}
, (27)

thus these spacesp±
C

coincide with the ones already defined in (18).

Lemma 7. Let f be a smooth function on Hn transforming like a modular form,
and let the function �f on G(A) be defined by (23). Then f is holomorphic if and
only if p−

C
.�f = 0.

Proof. By the transformation properties of�, it is enough to prove the following.
Let f be a smooth function onHn, and define� : Sp(2n,R) → C by

�(g) = f (g〈I 〉)j (g, I )−k, g ∈ Sp(2n,R).

Thenf is holomorphic if and only ifp−
C
.� = 0.

Let f̃ (g) = f (g〈I 〉) andj̃ (g) = j (g, I )−k. We are going to prove that

(X�)(g) = (Xf̃ )(g)j (g, I )−k for X ∈ p−
C
. (28)

By considering the functionf ′(Z) := f (h〈Z〉)j (h, Z)−k instead off , it is enough
to do this forg = 1, i.e., we will show that

(X�)(1) = (Xf̃ )(1) for X ∈ p−
C
. (29)
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By the product rule, we have

(X�)(1) = (Xf̃ )(1)+ f (I)(Xj̃)(1) for X ∈ gC

(this is immediate forX ∈ g, and also holds forX ∈ gC by linearity). Using (27),
one gets(Xj̃)(1) = 0 forX ∈ p−

C
. This proves (29), and therefore also (28). Thus�

is annihilated byp−
C

if and onlyf̃ is. But by the definition ofp−
C

we havep−
C
.f̃ = 0

if and only if f is holomorphic (see (26)). !

4.3. Hecke operators

We now fix a prime numberp. LetHclass
p be thep-component of the classical Hecke

algebra ofG = GSp(2n). It is spanned by double cosets

�M� with M ∈ G(Z[p−1])+,
whereZ[p−1] is the ring of rational numbers with onlyp-powers in the denomi-
nator.

Lemma 8. There is an isomorphism

Hclass
p

∼−→ H(Gp,Kp).

The double coset �M� corresponds under this isomorphism to the characteristic
function of KpMKp.

Proof. It is easy to see that there are bijections

�\G(Z[p−1])+/� ∼←→ G(Z)\G(Z[p−1])/G(Z)
∼←→ Kp\Gp/Kp,

induced by the inclusions of the groups. Thus the Hecke algebras are isomorphic
as vector spaces. There are similar bijections with cosets instead of double cosets.
This fact is used to check that the classical multiplication of double cosets coincides
with the convolution product on thep-adic Hecke algebra. !

From now on we may identify the two Hecke algebras. We recall how these
algebras act on modular forms. Iff is a classical modular form of weightk and
degreen, and ifT = �M� ∈ Hclass

p , then

f |kT :=
∑
i

f |kMi, where�M� =
∐
i

�Mi,

is again a modular form. This defines a right action ofHclass
p on the space of

modular forms of weightk and degreen. As before, this action differs slightly from
Andrianov’s action, which is defined with‖k instead of|k. It follows from (21) that

f ‖k T = det(M)(k−n−1)/2f |kT for T = �M�. (30)
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There is also a left action ofH(Gp,Kp) on adelic functions given by

(T �)(g) =
∫
Gp

T (h)�(gh) dh, T ∈ H(Gp,Kp), g ∈ G(A).

If T is the characteristic function ofKpMKp = ∐MiKp, and if � is right
Kp-invariant, then

(T �)(g) =
∑

�(gMi).

In the proof of the following lemma we use the notationM∗ = µ(M)M−1,
which is an anti-involution ofG. Note that

�M� = �M∗�,

sinceM may be chosen to be diagonal (M �→ M∗ is not the identity on diagonal
matrices, but operates as conjugation withJ , which is an element of�).

Lemma 9. The lifting f �−→ �f defined by (23) is Hecke-equivariant, i.e.,

T�f = �f |T for each T ∈ H(Gp,Kp)

(here we identified the p-adic and the classical Hecke algebra according to Lem-
ma 8).

Proof. It is enough to check that both sides are equal when evaluated at an element
g ∈ G+∞. We may further assume thatT is a double coset,

T = �M� =
∐
i

�Mi with Mi ∈ G(Z[p−1])+.

By the above considerations, we haveKpMKp =∐KpMi , and therefore

KpMKp = KpM
∗Kp =

∐
i

M∗
i Kp.

For a matrixM ∈ G(Q) we writeM∞ for the matrix considered as an element of
G∞, andMp considered as an element ofGp. With these notations, we have

(T �f )(g) =
∑
i

�f (g(M
∗
i )p) =

∑
i

�f ((M
∗
i )
−1
Q

g(M∗
i )p)

=
∑
i

�f ((M
∗
i )
−1∞ g) =

∑
i

(
f |(M∗

i )
−1g
)
(I )

=
∑
i

(
f |Mig)(I ) = ((f |T )|g)(I ) = �f |T (g). !

It follows from this lemma and (30) that

T�f = det(M)(n+1−k)/2�f ‖T for T = �M�. (31)

The following theorem summarizes the results of the previous sections.
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Theorem 1. The mapping f �→ �f defined by (23) maps the space Sk(�n) of clas-
sical Siegel cuspforms of degree n and weight k isometrically (see Lemma 6) and in
a Hecke-equivariant way (see Lemma 9) into a subspace of L2

0(Z(A)G(Q)\G(A))

consisting of continuous functions � on G(A) with the following properties:

i) �(�g) = �(g) for � ∈ G(Q),
ii) �(gk0) = �(g) for k0 ∈ K0 =∏p<∞G(Zp),

iii) �(gk∞) = �(g)j (k∞, I )−k for k∞ ∈ K∞ # U(n),
iv) �(gz) = �(g) for z ∈ Z(A), the center of G(A),
v) � is smooth as a function ofG(R)+ (fixed finite components), and is annihilated

by p−
C

(see Lemma 7),
vi) � is cuspidal (see Lemma 5).

4.4. The associated representation

We now associate an automorphic representation of PGSp(2n) with a Hecke eigen-
form of degreen.

Let f be a cuspidal Hecke eigenform of degreen and weightk. Let�f be the
associated function onG(A), defined by (23). Then�f is an automorphic form
onG(A) which lies inL2(Z(A)G(Q)\G(A)), and in fact in the cuspidal subspace
L2

0(Z(A)G(Q)\G(A)) by Lemma 5. Denote byVf the subspace of thisL2
0-space

spanned by all right translates of�f . Let π be any irreducible constituent of this
unitary representation (it is well known thatL2

0(Z(A)G(Q)\G(A)) decomposes
discretely into irreducible components). Thenπ is an automorphic representation
of G(A) which is trivial onZ(A). We may thus considerπ as an automorphic
representation of PGSp(2n,A).

Let

π =
⊗
p

πp (32)

be the decomposition ofπ into irreducible representationsπp of the local groups
Gp = G(Qp) (restricted tensor product). Because�f is right Kp = G(Zp)-
invariant at every finite placep, the representationπp is spherical for every suchp.
As discussed in 3.2, it is of the formπ(χ0, . . . , χn) for certain unramified characters
χi of Q∗

p, with Satake parametersβi := χi(p).
We also have theclassical Satake parameters of the eigenformf , defined as

follows (see [An]). There is a characterλ ∈ HomAlg(Hclass
p ,C), such that

f ‖k T = λ(T )f.

It is known that there are non-zero complex numbersa0, . . . , an such that

λ(�M�) = aδ
0

∑
i

n∏
j=1

(ajp
−j )dij ,
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where�M� =∐i �Mi and

Mi =
(
ωδ tA−1

i Bi

0 Ai

)
, with Ai =




ωdi1 ∗
. . .

0 ωdin


 . (33)

Thea0, . . . , an are theclassical Satake p-parameters of the eigenformf .

Lemma 10. If a0, a1, . . . , an are the classical Satake p-parameters of f , then

pn(n+1)/4−nk/2a0, a1, . . . , an

are the Satake parameters of the spherical representation πp, the local component
of π at p.

Proof. With T = �M�, by (31) we have

T�f = det(M)(n+1−k)/2 λ(T )�f = µ(M)n(n+1−k)/2 λ(T )�f

= pδn(n+1−k)/2aδ
0

∑
i

n∏
j=1

(ajp
−j )dij �f .

ThusT�f = λ̃(T )�f with

λ̃(T ) = pδn(n+1)/4bδ0

∑
i

n∏
j=1

(bjp
−j )dij ,

whereb0 = pn(n+1)/4−nk/2a0 andbj = aj for j = 1, . . . , n. It follows from (10)
thatb0, . . . , bn are the Satake parameters ofπp (note that ifMi is of the form (33),
thenM∗

i is of the form (7)).  !
It follows from (11) that for the classical Satake parameters we have

a2
0a1 · . . . · an = pkn−n(n+1)/2,

a relation also found in [AK].
We shall now describe the local componentπ∞ in the tensor product decom-

position (32) ofπ = πf . This component will only depend on the weightk of the
modular formf , which is a positive integer. Recall the definition (19) of the torus
elementsTi ∈ kC.

Lemma 11. The representation π∞ of G(R) contains a smooth vector v∞ with the
following properties:

i) π(k∞)v∞ = j (k∞, I )−kv∞ for all k∞ ∈ K∞.
ii) Tiv∞ = kv∞ for all i = 1, . . . , n.
iii) p−

C
v∞ = 0.
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Proof. In π the vector�f ∈ Vf projects to a pure tensorv = ⊗p≤∞vp with vp ∈
πp a spherical vector for finitep, andv∞ ∈ π∞ inheriting the analytic properties
of �f . Thus i) follows from Theorem 1 iii). Then ii) follows by a straightforward
computation. Finally iii) follows from Theorem 1 v). !

By this lemma,π∞ is an irreducible unitary representation of PGSp(2n,R)

with a lowest weight vector of weightk(e1 + . . . + en). There is only one such
representation, namely the representationπk constructed in 3.5. To summarize,

Theorem 2. Let π be the automorphic representation of PGSp(2n,A) associated
with f ∈ Sk(�n), as described at the beginning of this section. Then the local
components πp of π are given as follows:

i) At the archimedean place,π∞ is the lowest weight representationπk constructed
in 3.5 (it is a holomorphic discrete series representation exactly for k > n, and
a limit of discrete series for k = n).

ii) At a finite place,πp is the spherical principal series representation (see Sect. 3.2)
of PGSp(2n,Qp) with Satake parameters pn(n+1)/4−nk/2a0, a1, . . . , an,
where a1, . . . , an are the classical Satake parameters of the modular form f .

4.5. Vector valued modular forms

For completeness we shall indicate in this section how to extend the lifting procedure
described in the previous sections to vector valued Siegel modular forms. A good
source for vector valued modular forms is [Fr2]. The lifting procedure for these
forms is briefly described in [We].

Let(ρ,W)be a finite-dimensional rational representation of GL(n,C). Rational
means that there is an integerk such that the representationA �→ det(A)−kρ(A)

is polynomial (holomorphic). A vector valued modular form of typeρ and degree
n is a holomorphic functionf : Hn → W with the property that

f (γ 〈Z〉) = ρ(CZ +D)f (Z) for all γ =
(
A B

C D

)
∈ �n, Z ∈ Hn. (34)

For the one-dimensional representationρ(A) = det(A)k we recover the usual scalar
valued modular forms. Cuspidality is defined by properties of Fourier coefficients,
as in the scalar case. The space of all cusp forms of typeρ and degreen shall be
denoted bySρ(�n).

Assumingρ is irreducible, we now associate a function� on the adele group to
a modular formf , as follows. Letm ∈ R be the number such thatρ(s) = s2m idW ,
for each scalar matrixs = diag(s, . . . , s) ∈ GL(n,C), s > 0 (if ρ = detk, then
m = nk/2). Then we define

�̃(g) = µ(g∞)mρ(CI +D)−1f (g〈I 〉), (35)

with g = gQg∞k0 ∈ G(A) as in (22) andg∞ =
(
A B

C D

)
.
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This function is well-defined in view of (34). The factorµ(g∞)m ensures that
�̃ descends to a function on PGSp(2n,A). We further havẽ�(γgk0) = �̃(g) for
all γ ∈ G(Q) andk0 ∈ K0, and

�̃(gk∞) = ρ(k∞)−1�̃(g) for all k∞ ∈ K∞ # U(n), (36)

where the identificationK∞ # U(n) is given by

(
A B

−B A

)
�→ A− iB. Just as in

Lemma 7 one proves that the holomorphy off is equivalent top−
C
.�̃ = 0.

On the group one would like to have scalar valued functions lying in the usual
L2-space, instead of the vector valued�̃. Therefore letL be any non-zero linear
form onW , the space ofρ, and define

�(g) = L(�̃(g)), g ∈ G(A).

We will eventually consider the space generated by all right translates of�, and
therefore the choice ofL is irrelevant.

The Petersson scalar product onSρ(�n) is given by

〈f1, f2〉 =
∫

�n\Hn

〈
ρ(Y 1/2)f1(Z), ρ(Y 1/2)f2(Z)

〉
d∗Z.

Here the inner product〈 , 〉 is aU(n)-invariant hermitian form onW (unique up to
scalars), andY 1/2 denotes the unique positive definite square root of the positive
definite matrixY . Note that this is a generalization of the Petersson scalar product
in (25).

Forg =
(
A B

C D

)
∈ Sp(2n,R) andZ = g〈I 〉we haveY = (C tC+D tD)−1 =

(M tM̄)−1, whereM = CI +D. WriteM = pu with a symmetric positivep and
a unitaryu. Thenp−1 = Y 1/2, and there exists a constantc > 0 such that

‖ρ(Y 1/2)f (Z)‖2 = ‖ρ(M)−1f (Z)‖2 = ‖�̃(g)‖2

= c

∫
K∞

∣∣L(ρ(k)−1�̃(g))
∣∣2 dk = c

∫
K∞

|�(gk)|2 dk.

Now integration yields∫
�n\Hn

‖ρ(Y 1/2)f (Z)‖2 d∗Z = c

∫
Z(A)G(Q)\G(A)/K

∫
K∞

|�(gk)|2 dk dg

= c

∫
Z(A)G(Q)\G(A)

|�(g)|2 dk dg.

This shows that, after suitable normalization of measures, the mapf �→ � is a
norm-preserving map of Hilbert spaces fromSρ(�n) to

L2(Z(A)G(Q)\G(A)).
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The image is contained in the space of cuspidal functions, cf. Lemma 5.
Assuming thatf is a Hecke eigenform, one can now associate an automorphic

representationπf of PGSp(2n,A) with f as in the previous section. The space of
πf will be an irreducible subspace of theG(A)-space generated by�. For each
placep one can characterize the local componentsπp of πf as in Theorem 2. We
shall indicate what is different now at the archimedean placep = ∞.

It follows from (36) that theU(n)-moduleτ generated byU(n)-translates of� is
isomorphic to thecontragredient of ρ

∣∣
U(n)

(note thatρ
∣∣
U(n)

remains irreducible by
the unitary trick). Furthermore,� has the lowest weight property becausef is holo-
morphic. Consequently, the local componentπ∞ is thelowest weight representation
of G(R) with minimal K∞-type τ (more precisely, sinceG(R) is disconnected,π∞
combines a lowest and a highest weight representation).

The irreducible representations ofK∞ # U(n) are parameterized by elements
in the weight latticeC = Ze1 + . . . + Zen, modulo the action of the real Weyl
groupWr . SinceWr # Sn acts by permuting the coefficients of theei , the irreducible
representations ofK∞ are in 1-1 correspondence with the weights

λ = r1e1 + . . .+ rnen, ri ∈ Z, r1 ≥ . . . ≥ rn.

We denote the finite-dimensional irreducible representation corresponding to this
λ by τλ or τr1,... ,rn . The correspondence is thatτλ contains a vectorv0 that is
annihilated by the compact positive root vectors, and such thatTjv0 = rj v0 (see
(19)). Thusv0 is ahighest weight vector.

The irreducible rational representations of GL(n,C) are also parameterized
by integersr1 ≥ . . . ≥ rn. If ρr1,... ,rn denotes the corresponding representation,
parameterized as in [Fr2] appendix to I.6, then one checks thatρr1,... ,rn

∣∣
U(n)

=
τ−rn,... ,−r1, assuming the identificationK∞ # U(n) fixed above. In other words,
the contragredient of ρr1,... ,rn

∣∣
U(n)

is τr1,... ,rn .
It follows that iff is a cusp form of typeρr1,... ,rn in the sense of [Fr2], thenπ∞

is the representation ofG(R) with minimalK∞-typeτr1,... ,rn . In the scalar valued
case we haver1 = . . . = rn = k. If rn > n, thenπ∞ is a holomorphic discrete
series representation with Harish-Chandra parameter(r1−1)e1+ . . .+ (rn−n)en,
cf. Sect. 3.5.

4.6. L-functions

Let f be a cuspidal Siegel eigenform, and letπf be the automorphic representa-
tion of PGSp(2n,A) associated withf as in the previous section. The dual group
of PGSp(2n) is Spin(2n + 1). In Sect. 3.4 we considered two finite-dimensional
representations of Spin(2n + 1,C), the “projection representation”�1, and the
2n-dimensional spin representation�2.

Corresponding to these two representations of the connected component of the
L-group, we have two LanglandsL-functions associated withπf .According to our
results in Sect. 3.4, they are given by

L(s, πf , �1) =
∏
p

(
(1− p−s)

n∏
i=1

(1− bip
−s)(1− b−1

i p−s)

)−1

,
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and

L(s, πf , �2) =
∏
p

( n∏
k=0

∏
1≤i1<...<ik≤n

(1− b0bi1 . . . bikp
−s)

)−1

,

whereb0, b1, . . . , bn are the Satake parameters of the local componentπf,p. But
by Lemma 10, these Satake parameters are essentially the same as the classical
Satake parameters of the eigenformf . In view of the definitions (1) and (2) of the
classicalL-functions, we obtain the following result.

Theorem 3. Let πf be the cuspidal automorphic representation of the group
PGSp(2n,A) associated with the cuspidal Siegel eigenform f of degree n and
weight k. Then for the standard L-function of f we have the identity

L1(s, f ) = L(s, πf , �1),

where �1 is the projection representation (14) of Spin(2n+ 1,C), and for the spin
L-function of f we have

L2(s
′, f ) = L(s, πf , �2), s′ = s − n(n− 1)/4+ nk/2,

where �2 is the 2n-dimensional spin representation of Spin(2n+ 1,C).

We also remark that in the casen = 2 there is an isomorphism Spin(5,C) #
Sp(4,C), and the spin representation becomes the standard representation of
Sp(4,C).

This result allows us to carry over general group theoretic results to classical
L-functions. As an example, we prove the meromorphic continuation of the spin
L-functions for cuspforms inSk(�3) using Langlands’s theory of Euler products.

LetM be a maximal standard Levi subgroup in a connected reductive Chevalley
groupG. ConsiderG as a group overQ. (However, this theory is available in more
generality, cf. [Sh], for example.) LetP = MN be a standard parabolic inG. Denote
by P̂ = M̂N̂ the parabolic inĜ, the complex dual ofG, corresponding toP (cf.
[Bo]). Let r denote the adjoint action of̂M on the Lie algebra ofN̂ and write
r = ⊕m

i=1ri , with ri ’s the irreducible constituents ofr.
Let π = ⊗pπp be a cuspform onM = M(A). Let

f = ⊗pfp ∈ I (s, π) = ⊗pI (s, πp),

with the same notation as in Sect. 2 of [Sh]. LetS be a finite set of places for which
everyπp with π /∈ S is unramified. The theory of Euler products developed by
Langlands (cf. [La]) then implies that

M(s, π)f = (
∏
p∈S

A(s, πp)fp)⊗ (⊗p �∈S f̃p) ·
m∏
i=1

LS(is, π, r̃i)

LS(1+ is, π, r̃i)
(37)

has a meromorphic continuation to all ofC. For our purposes we may assumeS =
{∞}. The intertwining operatorA(s, π∞) is non-vanishing and has meromorphic
continuation to all ofC (cf. Section 17 of [KS]). This is true even ifS contains
finite places (cf. [Sh]).
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Now assumem = 1. From the above discussion and (37), it follows that

F(s) = L(s, π, r̃i)

L(s + 1, π, r̃i)

is meromorphic. Writing this as

L(s, π, r̃i) = F(s)L(s + 1, π, r̃i)

and noting thatL(s, π, r̃i) is analytic if Re(s) is sufficiently large, one concludes by
induction thatL(s, π, r̃i) has a meromorphic continuation to all ofC. In particular,
we get the following.

Theorem 4. The L-function L(s, πf , �1) of Theorem 3 has a meromorphic contin-
uation to all of C.

Proof. ConsiderM = GL(1)× Sp(6) as a standard Levi subgroup inG = Sp(8).
The dual ofM is C× × SO(7,C) with m = 1 andr = r1 is seven dimensional
(cf. Case(Cn) of Sect. 4 of [Sh]). Now, if we put the representationσ = 1 ⊗ πf

on M = M(A), then, sincer1 is self-contragredient,L(s, πf , �1) = L(s, σ, r1),
which has meromorphic continuation to all ofC by our previous argument. !

To prove a similar result for the otherL-function consider the following. LetG
be a Chevalley group of typeF4. This is a split (as well as adjoint) simply connected
simple algebraic group with Dynkin diagram

>• • • •
α1 α2 α3 α4

Consider the standard parabolic subgroupP = MN, whereM is the standard
Levi subgroup corresponding to{α2, α3, α4}. One can then show thatM # GSp(6)
(cf. [As]). Note that the complex dual ofG is again of typeF4 and contains the dual
parabolicP̂ = M̂N̂ (see [Bo]). In fact,

M̂ = GSpin(7,C)

is the dual ofM. This is the case(xxii) of Sect. 6 of [La] withm = 2 and we have
r = r1⊕ r2 with r1 an eight dimensional andr2 a seven dimensional representation
of M̂. Indeed, ifr is restricted to Spin(7,C) ⊂ M̂, thenr1 is the eight dimensional
spin representation whiler2 is what we called the projection representation in
Sect. 3.4. Note that these representations are self-dual, and therefore we do not
have to care about contragredients in the following.

Put a cuspformπ onM = M(A). Now (37) and its subsequent argument again
imply that

G(s) = L(s, π, r1)

L(s + 1, π, r1)
· L(2s, π, r2)

L(2s + 1, π, r2)

has a meromorphic continuation to all ofC. Write this as

L(s, π, r1) = G(s) · L(2s + 1, π, r2)

L(2s, π, r2)
· L(s + 1, π, r1).
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Now if we let π be the representation onM = GSp(6,A) lifted up from πf

on PGSp(6,A), then Theorem 4 and an induction similar to its proof imply the
following.

Theorem 5. The L-function L(s, πf , �2) of Theorem 3 has a meromorphic contin-
uation to all of C if n = 3.

Hence, in view of Theorem 3, we get

Corollary 1. Let f ∈ Sk(�3) be a cuspform of degree 3, and let L2(s, f ) be the
spin L-function attached to f . Then L2(s, f ) has meromorphic continuation to all
of C.

We remark that the same proof works for vector valued modular forms.
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