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Abstract. We analyze reducibility points of representations of p-adic groups of classical

type, induced from generic supercuspidal representations of maximal Levi subgroups,
both on and off the unitary axis. We are able to give general, uniform results in terms of

local functorial transfers of the generic representations of the groups we consider. The

existence of the local transfers follows from global generic transfers that were established
earlier.

1. Introduction

In this paper we prove some general, uniform results on reducibility of representation
induced from irreducible, generic, supercuspidal representations of the Levi subgroups of the
maximal parabolics of p-adic groups. Some special cases of these results have been known
for some time. Our main contribution in this work is to cast these results in a general setup
in the framework of local Langlands Funcotriality from groups of classical type (cf. Section
2.1) to the general linear groups. This allows us to prove quite general, uniform results
using information about poles of local L-functions and image of local functorial transfers.
Moreover, this agrees with the conjecture on arithmetic R-groups, defined by Langlands and
Arthur [1, §7], through Local Langlands Correspondence (cf. [8]).

Let F denote a p-adic field of characteristic zero. Consider a maximal Levi subgroup of
the form M = GL(m)×G(n) in a larger group G(m+n), a connected linear algebraic group
over F, of the same type as G. We take the group G(n) to be any of the split semi-simple
groups SO(2n + 1), Sp(2n), SO(2n), the split reductive groups GSpin(2n + 1), GSpin(2n),
or the non-split quasi-split groups SOE/F (2n), UE/F (2n) or UE/F (2n + 1). Here E/F is
a quadratic extension over which our quasi-split group splits. These groups all have the
property that their connected L-group has a classical derived group.

Given a connected reductive group H over F, let H = H(F ). In particular, we let G =
G(F ) and M = M(F ), where G and M are as in the previous paragraph. Let B = TU
be a Borel subgroup of G with M ⊃ T. Denote by P = MN the parabolic subgroup of G,
standard via N ⊂ U or P ⊃ B. Let A0 ⊂ T be the maximal split subtorus of T and let
A ⊂ A0 be the split component of M.

If α is the unique simple root of A0 in Lie(N), we set α̃ = 〈ρ, α∨〉−1ρ, where ρ is half the
sum of the roots of A0 in Lie(N) as in [44, §1.2], α∨ is the coroot of the root α, and 〈·, ·〉
denotes the pairing between roots and coroots. Then, α̃ ∈ a∗, where a is the real Lie algebra
of A and a∗ is its dual (cf. [44]). Let s be a complex number. Then sα̃ ∈ a∗ ⊗R C. Now let
τ be an irreducible supercuspidal representation of M. We are interested in understanding
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reducibility of the normalized induced representation

I(sα̃, τ) = IndGMN

(
τ ⊗ q〈sα̃,HM (·)〉 ⊗ 1

)
, (1.1)

where HM : M −→ a = Hom (X(M)F ,R) is defined as in [44, §3.3] by

q〈χ,HM (m)〉 = |χ(m)|F , ∀m ∈M, (1.2)

where X(M)F is the group of the F -rational characters of M, χ ∈ X(M)F and 〈·, ·〉 is the
pairing between X(M)F and a.

The aim of this paper is to determine the reducibility points for I(sα̃, τ) for all s ∈ C,
whenever τ is generic, i.e., it has a Whittaker model, in the setting of a pair (G,M) of
classical type, in terms of functoriality as we now explain.

By assumption M = GL(m) ×G(n) and in each case LG embeds into GL(N,C) ×WF

for a minimal N, with an image with a classical derived group (cf. (2.3) for more detail).
Write τ = σ⊗π. By local transfer, π transfers to Π = Π1� · · ·�Πd on GL(N,F ) (Theorem
3.2 here, [7, 12, 13, 30, 31]).

Our main tool is to consider the poles of the intertwining operators (thus zeros of
Plancherel measures), as proposed by Harish-Chandra [19, 46], which we determine through
poles of certain L-functions [39] (Theorem 2.13 and Corollary 2.14 here). Local transfer
allows us to show that these poles exist only when σ is quasi-self-dual (conjugate-self-dual
when G(n) is unitary) and σ is of the opposite type to the L-group of G (i.e., orthogonal
versus symplectic, see Section 4) or σ is among the Πi when it is of the same type as the
L-group of G.

This provides us with complete information about reducibility points on the unitary axis
for all groups of classical type. The reducibility off the unitary axis follows from [39, Theorem
8.1] (Theorem 4.24 here). These results are stated as Theorem 4.12 and summarized for
individual groups as Propositions 4.26 – 4.31.

The case of induction from other discrete series representation of M must also be ad-
dressed and it is left for the future. One should also verify the equality of the arithmetic
R-groups, defined by Langlands and Arthur [1, §7], with the analytic R-groups, defined by
Knapp and Stein [8], as conjectured by Langlands and Arthur.

The poles of intertwining operators can also be determined by direct calculations and
there is a large body of work on this topic, starting with [42, 43, 16, 17, 18] and ending with
some recent work [45, 48, 34, 10], where the connection to functoriality is fully established
in some rather general cases (SO(2n+ 1, F )).

The theory developed in [39] (Theorem 4.24 here) applies to any quasi-split group and in
[33], Jing Feng Lau has determined the complete reducibility results for exceptional groups
E6, E7, and E8, where Mder is a product of three SL-groups, using poles of triple product
L-functions which are of Artin type [32]. The case of exceptional group G2 was fully treated
in [39]

This paper is organized as follows. In Section 2 we introduce our notation and review the
local L-functions from the Langlands-Shahidi method and their connection to reducibility
of induced representations of p-adic groups of classical type that we consider. In Section 3
we give a proof of the generic local transfer of supercuspidal representations of the p-adic
groups of classical type. Our main uniform result on reducibility is given as Theorem 4.12.
The purpose of Section 4.3 is then simply to summarize all the information we have, both on
and off the unitary axis, for each individual group in the hopes that it helps the interested
reader see what our results give for each individual group and, at the same time, it indicates
the scope of these results covering all groups of classical type.



LOCAL TRANSFER AND REDUCIBILITY 3

Dedication. The first and third named authors would like to dedicate their contributions
to this paper to their coauthor, Jim Cogdell. We are very fortunate to have Jim as a friend
and collaborator and have very much benefited from his kindness and generosity and it is
our pleasure to submit this paper to this volume in his honor.

Contents

1. Introduction 1
2. Local Representations and L-functions 3
2.1. Notation 3
2.2. The Langlands-Shahidi Local L-functions 4
3. Generic Local Transfers - Supercuspidal Case 5
4. Reducibility of Local Representations 11
4.1. Reducibility on the Unitary Axis 11
4.2. Reducibility off the Unitary Axis 15
4.3. Reducibility for Groups of Classical Type 16
References 18

2. Local Representations and L-functions

2.1. Notation. Let F be a non-archimedean local field of characteristic zero, with | · |F
denoting its p-adic absolute value, normalized so that |$|F = 1/q, where $ is a fixed
uniformizer of F and q is the the cardinality of the residue field of F. For later use, let us
also fix a quadratic extension E/F. Let δE/F denote the non-trivial quadratic character of

F× associated with E/F via Class Field Theory. We denote the Weil group of F and E by
WF and WE , respectively. Also, we let x 7→ x̄ denote the non-trivial element of Gal(E/F ).

Let G denote a connected, reductive, quasi-split, linear, algebraic group over F . We fix a
splitting (B,T, {X}) for G, where B is a Borel subgroup of G, T is a maximal torus in B,
and {X} is a collection of root vectors, one for each simple root of T in B. Recall that G is
quasi-split over F if and only if it has an F -splitting, i.e., one preserved under Gal(F/F ).

We will assume G = G(n) to be one of the following groups: the split groups SO(2n+1),
Sp(2n), SO(2n), GSpin(2n + 1), GSpin(2n), or the quasi-split non-split groups UE/F (2n),
UE/F (2n + 1), SOE/F (2n), or GSpinE/F (2n), where E/F is a quadratic extension. We
refer to these groups as groups of classical type, i.e., those whose connected L-groups have
classical derived groups. The groups UE/F (2n) and UE/F (2n + 1) are of type 2An and

SOE/F (2n) and GSpinE/F (2n) are of type 2Dn.
We write B = TU, where U is the unipotent radical of B. Unless stated otherwise, all

the parabolic subgroups we encounter will be assumed to be standard, i.e., they contain B.
Any standard, maximal, parabolic subgroups P of G has a Levi decomposition P = MN

with M ∼= GL(m)×G(n−m), if G is orthogonal or symplectic, or M ∼= ResE/F GL(m)×
G(n−m), if G is unitary.

For later use we define the positive integer N = NG to be the dimension of the first

fundamental representation, or the standard representation, of LG0 = Ĝ(C), the connected
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component of L-group of G. To be more explicit, for G = G(n) as above, we have

N = NG =



2n if G = UE/F (2n),

2n+ 1 if G = UE/F (2n+ 1),

2n if G = SO(2n+ 1),GSpin(2n+ 1),

2n+ 1 if G = Sp(2n),

2n if G = SO(2n),GSpin(2n),

2n if G = SOE/F (2n),GSpinE/F (2n).

(2.1)

In each case the standard representation is a representation of LG0 on CN and there is an
associated representation of LG on CN , or CN ×CN in the unitary group cases, giving rise
to a natural L-homomorphism

ι : LG −→ LH(N), (2.2)

where

H(N) =

{
GL(N) if G is orthogonal or symplectic,

ResE/F GL(N) if G is unitary.
(2.3)

We refer to [14, §1] for a detailed description of ι.
Let A0 denote the maximal split torus in T and denote by Φ = Φ(A0,G) the restricted

roots of A0 in G containing positive roots Φ+. Also, let ∆ ⊂ Φ+ denote the set of simple
roots. Given a standard maximal parabolic P there exists a unique α ∈ ∆ such that P = Pθ

is determined by the subset θ = ∆ \ {α} of ∆. Let w0 = wGw
−1
M denote the longest element

of the Weyl group of G modulo that of M. By abuse of notation, we employ the same
symbol for a Weyl group element and its representative in the quotient group. We then
have w0(θ) ⊂ ∆ and w0(α) < 0.

A maximal standard parabolic P = Pθ is called self-associate if w0(θ) = θ.

Remark 2.4. The only non-self-associate case among those we consider above is the following
(cf. [27, §4]):

• Dn with n odd and θ = ∆ − {αn}. This corresponds to the Levi subgroup GL(n)
in SO(2n) or GL(n)×GL(1) in GSpin(2n) with n odd.

2.2. The Langlands-Shahidi Local L-functions. Let P = Pθ be a maximal parabolic
in G as above and let ρ = ρP denote half of the sum of positive roots in N. Also, let

α̃ = 〈ρ, α∨〉−1ρ. (2.5)

We have LP = LMLN and we let r denote the adjoint action of LM on the Lie algebra
Ln = Lie(LN). Let Vi be the subspace of Ln spanned by the root vectors Xβ∨ satisfying
〈α̃, β∨〉 = i. Then we have an irreducible decomposition

r =
⊕
i

ri, (2.6)

where ri denotes the restriction of r to Vi.
We fix a non-trivial additive character ψ of F throughout. We can use ψ to define a

multiplicative character of U(F ), denoted again by ψ. Let τ be an irreducible ψ-generic
representation of M(F ) and let s ∈ C. Having fixed ψ, we often simply say generic to mean
ψ-generic in the remainder. Let

HM : M(F ) −→ a = Hom(X(M)F ,R) (2.7)
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denote the Harish-Chandra homomorphism defined via

q〈χ,HM(m)〉 = |χ(m)|F , m ∈M(F ), χ ∈ X(M)F . (2.8)

If τ is unramified, then it is given by a semisimple conjugacy class {Aτ} in LM and we set

L(s, τ, ri) = det
(
IVi
− ri({Aτ})q−s

)−1
. (2.9)

2.2.1. Intertwining Operators. Let W = W (A0) = NG(A0)/T and denote the longest
element of W by w`. Also, let wM

` ∈ WM(A0). Then w0 = w`w
M
` . Set N′ = w0N

−w−10 .
We define the induced representation

I(s, τ) = Ind
G(F )
M(F )N(F )

(
τ ⊗ q〈sα̃,HM(·)〉 ⊗ 1

)
, (2.10)

where ρ denotes half of the sum of positive roots in N and α̃ = 〈ρ, α∨〉−1ρ. Here, 〈·, ·〉
denotes the Z-pairing between characters and cocharacters of (G,T). We also set

I(τ) = I(0, τ). (2.11)

Define the intertwining operator

A(s, τ, w0) =

∫
N′(F )

f(w−10 n′g)dn′ : I(s, τ) −→ I (w0(s), w0(τ)) . (2.12)

If τ is generic, then, via the Langlands-Shahidi method, the L-functions L(s, τ, ri) are always
defined, whether τ is unramified or not, and agree with the definition in the unramified case
given above.

The following two results are well-known (cf. [39, §7]).

Theorem 2.13. Assume that P is a self-associate maximal parabolic and let τ be generic,
unitary, supercuspidal. Then

L(s, τ, r̃1)−1L(2s, τ, r̃2)−1A(s, τ, w0)

is a holomorphic, non-vanishing operator on all of C.

A consequence of this theorem is the following, which is what we will use later.

Corollary 2.14. Suppose that τ is generic, sucpercuspidal and unitary.

(a) If w0(τ) 6∼= τ , then I(τ) is irreducible. (In particular, induction from a non-self-
associate parabolic is always irreducible.)

(b) If P is self-associate and w0(τ) ∼= τ , then I(τ) is irreducible if and only if exactly
one of L(s, τ, r̃1) or L(s, τ, r̃2) has a pole at s = 0.

(We allow for the second L-function not to appear at all. This does occasionally occur in
the case of Siegel Levi subgroups, as we will explain later.)

3. Generic Local Transfers - Supercuspidal Case

One consequence of the generic global functoriality is that we can draw conclusions about
transfer of local representations, once it is known that the image of the global functorial
transfer is an isobaric sum of unitary cuspidal representations. Given that the local transfers
are completely understood at the archimedean places, we will focus on the non-archimedean
local transfers.
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Definition 3.1. Let F, G and N = NG be as before. Let π be an irreducible generic
representation of G(F ). We say an irreducible representation Π of GL(N,F ) is a local
transfer of π if

L(s, π × ρ) = L(s,Π× ρ) and ε(s, π × ρ, ψ) = ε(s,Π× ρ, ψ)

or equivalently

L(s, π × ρ) = L(s,Π× ρ) and γ(s, π × ρ, ψ) = γ(s,Π× ρ, ψ)

for all irreducible, unitary, supercuspidal representations ρ of GL(m,F ), 1 ≤ m ≤ N − 1.
The L-, ε-, and γ-factors on the left hand side are those of the Langlands-Shahidi method
while those on the right hand side are defined via parameters of the Local Langlands Corre-
spondence.

We recall that the GL×GL factors on the right hand side are known to equal those
defined via the Rankin-Selberg or the Langlands-Shahidi methods.

We describe the local transfer for irreducible generic supercuspidal representations in the
theorem below. This is what we need for our results on reducibility of local representation
in Section 4. This result is a consequence of the global generic functoriality and was proved
in many of the cases we cover below along with the global results. We give the details in
the proof below.

Theorem 3.2. Let G = G(n) and E/F be as before. Let π be an irreducible, generic,
supercuspidal, representations of G(F ). Then π has a unique local transfer Π to GL(N,F )
if G is symplectic or orthogonal, or to GL(N,E) if G is unitary. Moreover, it is of the form

Π = Π1 � · · ·� Πd = Ind (Π1 ⊗ · · · ⊗Πd) ,

where each Πi is an irreducible, unitary, supercuspidal representation of GL(Ni, F ) or
GL(Ni, E), as appropriate, and the induction is from the standard parabolic subgroup of
GL(N) with Levi component of type (N1, . . . , Nd) with N1 + · · ·+Nd = N. Furthermore,

• if G = SO(2n+ 1), then each Ni is even, each Πi satisfies Πi
∼= Π̃i, L(s,Πi,∧2) has

a pole at s = 0, and Πi 6∼= Πj for i 6= j.

• if G = SO(2n) or SOE/F (2n), n ≥ 2, or G = Sp(2n), then each Πi satisfies Πi
∼= Π̃i,

L(s,Πi,Sym2) has a pole at s = 0, and Πi 6∼= Πj for i 6= j.

• if G = GSpin(2n + 1), then each Ni is even, each Πi satisfies Πi
∼= Π̃i ⊗ ω, where

ω = ωπ is the central character of π, L(s,Πi,∧2 ⊗ ω−1) has a pole at s = 0, and
Πi 6∼= Πj for i 6= j.

• if G = GSpin(2n) or GSpinE/F (2n), n ≥ 2, then each Πi satisfies Πi
∼= Π̃i ⊗ ω,

where ω = ωπ is again the central character of π, L(s,Πi,Sym2 ⊗ ω−1) has a pole
at s = 0, and Πi 6∼= Πj for i 6= j.

• if G = UE/F (2n + 1), then each Πi satisfies Πi
∼= Π̃i, the local Asai L-function

L(s,Πi, rA) has a pole at s = 0, and Πi 6∼= Πj for i 6= j.

• if G = UE/F (2n), then each Πi satisfies Πi
∼= Π̃i, the local twisted Asai L-function

L(s,Πi, rA ⊗ δE/F ), has a pole at s = 0, and Πi 6∼= Πj for i 6= j.

Here, Π̃i denotes the contragredient of Πi and Πi denotes the Gal(E/F )-action on the
representation Π, i.e., Π(g) = Π(ḡ).

Proof. For G = SO(2n+1), Sp(2n), or SO(2n), this is [13, Theorem 7.3]. For G = UE/F (2n)
this is [30, Proposition 8.4] and for G = UE/F (2n + 1) it is [31, Proposition 4]. For
G = GSpin(2n + 1) or GSpin(2n) this is [20, Theorem 4.7]. All of these results are based
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on a local-global argument, using the fact that one can embed the generic supercuspidal
representation π as the local component of a global generic representation to which one can
apply the global generic transfer, possibly several times, to obtain the result. Let us give
some of the details now to indicate that a similar argument works for all the groups we are
considering.

We first show the existence of one local transfer Π. If π is unramified, then the choice
of Π is clear; we simply take the irreducible, unramified representation determined by the
semi-simple conjugacy class in GL(N,C) generated by the image of the class of π under the
natural embedding ι as in (2.2). We then know, as can be seen directly and is verified in
the proof of the global generic transfer in the cases we are considering, that we have the
requirement of Definition 3.1, i.e., that the local L- and ε-factors of π and Π twisted by
irreducible, unitary, supercuspidal representations ρ of GL(m,F ) for m up to N − 1 are
equal.

Next, assume that π is a general (not necessarily unramified) generic supercuspidal rep-
resentation. Since π is generic and supercuspidal, by [39, Proposition 5.1], there exist a
number field k, a non-archimedean place v0 of k, and a globally generic cuspidal automor-
phic representation σ of G(Ak) such that kv0 = F, and σv0 = π, and for all non-archimedean
places v 6= v0 of k the local representations σv is unramified. Here, σ is generic with respect
to a global generic character Ψ whose local component at v0 is out fixed ψ. (In the non-split
quasi-split cases, we have a quadratic extension K/k of number fields, and a place w of K
lying above the place v of k such that Kw = E.)

We recall the globally generic automorphic representation σ of G(Ak) is known to have
a transfer Σ to GL(N,Ak) for each of the groups we are considering, as proved in [5, 7, 12,
13, 30, 31]. To be more precise, Σv is the transfer of σv as above for v outside a finite set
of places and σv unramified. In particular the twisted L- and ε-factors are equal for Σv and
σv for such v. Now, just take Π to be the local component of Σ at v0.

To show this Π satisfies the requirements of Definition 3.1, we again note that if ρ is an
irreducible, unitary, supercuspidal representation of GL(m,F ), 1 ≤ m ≤ N − 1, then we
may again use [39, Proposition 5.1] to embed ρ in a global cuspidal representation τ ′ of
GL(m,Ak) such that τ ′v0 = ρ and τ ′v is unramified for all non-archimedean v 6= v0.

Let S be a finite set of non-archimedean places of k such that σv is unramified for v 6∈ S
and let S′ = S − {v0}. Choose an idele class character η such that ηv0 is trivial and ηv is
highly ramified at v ∈ S′. By a general result, usually referred to as stability of γ-factors,
and used in the establishing the global generic transfer results for each of the groups above,
for v ∈ S′ we have

γ(s, σv × (τ ′v ⊗ ηv),Ψv) = γ(s,Σv × (τ ′v ⊗ ηv),Ψv). (3.3)

Let τ = τ ′ ⊗ η. Since ηv0 is trivial, we have τv0 = τ ′v0 = ρ. On the other hand, we have
the global functional equations

L(s, σ × τ) = ε(s, σ × τ)L(1− s, σ̃ × τ̃) (3.4)

and

L(s,Σ× τ) = ε(s,Σ× τ)L(1− s, Σ̃× τ̃), (3.5)

which we can rewrite as

γ(s, π × ρ, ψ) =

(∏
v∈S′

γ(s, σv × τv,Ψv)
−1

)
LS(s, σ × τ)

εS(s, σ × τ,Ψ)LS(1− s, σ̃ × τ̃)
(3.6)
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and

γ(s,Π× ρ, ψ) =

(∏
v∈S′

γ(s,Σv × τv,Ψv)
−1

)
LS(s,Σ× τ)

εS(s,Σ× τ,Ψ)LS(1− s, Σ̃× τ̃)
. (3.7)

Now, the fractions on the right hand sides of (3.6) and (3.7) are equal by the unramified
case mentioned above and the two products on the right hand sides are also equal as in
(highly-ram) above. Hence, the left hand sides of (3.6) and (3.7) must be equal, which
means that Π is indeed a local transfer.

The uniqueness of Π follows from the “local converse theorem for GL(N)” which means
that an irreducible, generic representation of GL(N,F ) (or GL(N,E) as the case may be) is
uniquely determined by its γ-factors twisted by supercuspidal representations of all smaller
rank general linear groups (cf. Remark after the Corollary of [23, Theorem 1.1]).

It remains to show that Π is of the form stated in the theorem. Being a local component
of a globally generic automorphic representation, Π is a generic, unitary irreducible repre-
sentation of GL(N,F ) or GL(N,E) as the case may be. By classification of unitary generic
representations of the general linear groups [49] we have

Π = Ind
(
δ1ν

r1 ⊗ · · · δkνrk ⊗Π1 ⊗ · · · ⊗Πd ⊗ δ1ν−rk ⊗ · · · δkν−r1
)
, (3.8)

where each δj and each Πi is a discrete series representation and 0 < rk ≤ · · · ≤ r1 <
1
2 .

Here, ν(·) = |det(·)|.
Recall that

γ(s, π × ρ, ψ) = γ(s,Π× ρ, ψ) (3.9)

for any unitary, supercuspidal representation ρ of GL(m) for m up to N − 1. In fact,
multiplicativity of γ-factors implies that (3.9) holds for ρ discrete series as well. To see this,
note that if ρ is discrete series, then it can be realized as the irreducible quotient of an
induced representation

Ind
(
ρ0ν
− t−1

2 ⊗ · · · ⊗ ρ0ν
t−1
2

)
, (3.10)

where ρ0 is unitary supercuspidal and t is a positive integer. Then,

γ(s, π × ρ, ψ) =
t−1∏
j=1

γ(s+
t− 1

2
− j, π × ρ0, ψ)

=

t−1∏
j=1

γ(s+
t− 1

2
− j,Π× ρ0, ψ)

= γ(s,Π× ρ, ψ),

i.e., (3.9) holds with ρ any discrete series representation of GL(m) for m up to N − 1.
Now, up to a monomial factor coming from the ε-factors, the numerator of γ(s,Π× ρ, ψ)

is given by  k∏
j=1

L(s+ rj , δj × ρ)L(s− rj , δj × ρ)

d∏
i=1

L(s,Πi × ρ)

−1 . (3.11)

Since neither of L(s, δj × ρ) or L(s,Πi × ρ) has a pole in <(s) > 0 this numerator can have
zeros only in <(s) < 1

2 .
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Similarly, the denominator of γ(s,Π× ρ, ψ) is the polynomial k∏
j=1

L(1− s− rj , δ̃j × ρ̃)L(1− s+ rj , δ̃j × ρ̃)

d∏
i=1

L(1− s, Π̃i × ρ̃)

−1 , (3.12)

which can only have zeros in the region <(s) > 1
2 .

Hence, the numerator and denominator in the factorization coming from the multiplica-
tivity of the γ-factor have not common zeros and, consequently, we conclude from the
equality of the γ-factors that

L(s, π × ρ) =

k∏
j=1

L(s+ rj , δj × ρ)L(s− rj , δj × ρ)

d∏
i=1

L(s,Πi × ρ). (3.13)

On the other hand, we know [26] that the same expression gives L(s,Π× ρ). Therefore,

L(s, π × ρ) = L(s,Π× ρ), (3.14)

with ρ discrete series.

Fix 1 ≤ i ≤ k. We apply (3.14) with ρ = δ̃j . Since δj and π are both tempered we know

that L(s, π× δ̃j) is holomorphic for <(s) > 0. In general, this is the third author’s Tempered
L-function Conjecture [39, Conj. 7.1]. Many cases of this conjecture were proved by several
authors [3, 11, 22, 28, 29, 36] and a proof in the general case has now appeared in [22]. On
the other hand, we have

L(s,Π× δ̃j) =

k∏
j=1

L(s+ rj , δj × δ̃i)L(s− rj , δj × δ̃i)
d∏
j=1

L(s,Πj × δ̃i). (3.15)

The term L(s− ri, δi × δ̃i) produces a pole at s = ri which results in a pole of L(s,Π× δ̃i)
at s = ri > 0 as the local L-factors are never zero. This is a contradiction unless k = 0, i.e.,
there are no δi’s in (3.8). Hence,

Π = Ind (Π1 ⊗ · · ·Πd) (3.16)

is a full induced representation from unitary discrete series representations Πi. In particular,
Π is tempered.

In fact, we claim that each Πi is unitary supercuspidal. To see this, we can again realize
the discrete series representation Πi as the irreducible quotient of the induced representation

Ind
(

Π0
i ν
− ti−1

2 ⊗ · · · ⊗Π0
i ν

ti−1

2

)
(3.17)

associated with the segment [Π0
i ν
− ti−1

2 ,Π0
i ν

ti−1

2 ] where Π0
i is unitary supercuspidal and ti

is a positive integer [9, 50]. Applying (3.14) again with ρ = Π̃i we have

L(s, π × Π̃i) = L(s,Π× Π̃i). (3.18)

Let us calculate both sides of this equality. On the right hand side we have

L(s,Π× Π̃i) =

d∏
j=1

L(s,Πj × Π̃i) (3.19)

and

L(s,Πi × Π̃i) =

ti−1∏
k=0

L(s+ k,Π0
i × Π̃0

i ). (3.20)
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(The last equation is verified, for example, in [28, p. 575].) The local L-function L(s,Π0
i×Π̃0

i )

has a pole at s = 0 so that L(s + ti − 1,Π0
i × Π̃0

i ) has a pole at s = −(ti − 1). Since local

L-functions are never zero, this pole persists to give a pole of L(s,Π× Π̃i) at s = 1− ti.
As for the left hand side, from [39] we have

L(s, π × Π̃i) = L(s+
ti − 1

2
, π × Π̃i) (3.21)

since π is supercuspidal. Since L(s, π × Π̃i) can have poles only for <(s) = 0, we see that

L(s, π× Π̃i) can only have poles on the line <(s) = −(ti− 1)/2. These locations of poles are
inconsistent unless ti = 1, i.e., Πi = Π0

i is supercuspidal, as we desire.
Finally, we show that the conditions in terms of the L-functions in the statement of the

theorem hold. Consider the case of the general spin groups first. Let ω = ωπ denote the
central character of π. Consider the equality

L(s, π × Π̃i) = L(s,Π× Π̃i). (3.22)

The right hand side has a pole at s = 0 as before. For the left hand side to have a pole at
s = 0, from the general properties of these local L-functions (cf. [39, Cor. 7.6], for example)
we must have Π ⊗ π ∼= w0(Π ⊗ π) as representations of GL×G. By Lemma 4.17 below we
this implies that

Πi
∼= Π̃i ⊗ ω. (3.23)

Moreover, the order of pole at s = 0 on the left hand side of (3.22) is one while the order
of the pole on the right hand side is the number of j such that Πj

∼= Πi. Hence, Πi 6∼= Πj if
i 6= j.

Furthermore, assuming that we are in the odd general spin group case, [39] implies that
the product

L(s, π ×Πi)L(s,Πi,Sym2 ⊗ ω−1) (3.24)

has a simple pole at s = 0 in this situation. This pole is already accounted for by the pole
at s = 0 of L(s, π ×Πi). Therefore, L(s,Πi,Sym2 ⊗ ω−1) has no pole at s = 0. However,

L(s,Πi × Π̃i) = L(s,Πi ×Πi ⊗ ω−1) = L(s,Πi,Sym2 ⊗ ω−1)L(s,Πi,∧2 ⊗ ω−1), (3.25)

which implies that L(s,Πi,∧2 ⊗ ω−1) has a pole at s = 0 (which can only happen if Ni is
even). If we are in the even general spin groups, the same argument works with the roles of
Sym2 and ∧2 switched.

We end the proof by mentioning that a similar argument, with minor modifications
replacing ω-self-dual with self-dual or conjugate-self-dual as appropriate, establishes the L-
function condition for the remaining groups in the statement of the theorem. We will not
repeat those arguments as they are similar and have already appeared in the literature. For
orthogonal and symplectic groups, this is done in [13, p. 203]. For unitary groups, it is
verified in [30] and [31]. �

We should note here that the conditions that the transfers Π need to satisfy in the the-
orem above in fact determine the image of the transfer. In other words, every Π satisfying
these conditions is the transfer of an irreducible, generic, supercuspidal π from the appro-
priate group G to GL(N). For this one needs the “local descent” for all the groups we are
considering. For symplectic and orthogonal groups, as well as the unitary groups, these
facts have already been established [47, 15] and for the general spin groups this is a work in
progress of Jing Feng Lau.
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4. Reducibility of Local Representations

As an application of our results on the generic local transfer in Section 3, we now give
some uniform results on reducibility of local induced representations.

4.1. Reducibility on the Unitary Axis. To state our main uniform results on irreducibil-
ity, we first define the orthogonal/symplectic representations of general linear groups.

Let F and ψ be as before. Let η be a character of F× and let σ be an irreducible
supercuspidal representation of GL(m,F ). Let

φ : WF −→ GL(m,C) (4.1)

be the parameter of σ and set

L(s, σ,Sym2 ⊗ η) := L(s,Sym2φ · η), (4.2)

L(s, σ,∧2 ⊗ η) := L(s,∧2φ · η). (4.3)

When η = 1, these reduce to the usual untwisted L-factors.
Similarly, with E/F as before, let σ be an irreducible supercuspidal representation of

GL(m,E). Let

φ : WE −→ GL(m,C) (4.4)

be the parameter of σ and set

L(s, σ, rA) := L(s, rA ◦ φ), (4.5)

L(s, σ, rA ⊗ δE/F ) := L(s, rA ◦ φ · δE/F ). (4.6)

Here, rA is denote the Asai representation. For details about the Asai representation and
the corresponding L-function we refer to [30, §5 and §8].

The representation σ of GL(m,F ) is said to be η-self-dual if it satisfies

σ̃ ∼= σ ⊗ η. (4.7)

If σ is η-self-dual, then we have

L(s, σ × σ̃) = L(s, σ × σ ⊗ η)

= L(s, σ,∧2 ⊗ η) · L(s, σ,Sym2 ⊗ η) (4.8)

and exactly one of the two local L-function on the right hand side of (4.8) has a pole at
s = 0. Conversely, if one of the L-functions on the right hand side of (4.8) has a pole at
s = 0, then σ is η-self-dual. Again, when η = 1 the representation σ is said to be self-dual
and the (untwisted) exterior/symmetric square L-functions replace the twisted ones above.

Analogously, a representation σ of GL(m,E) is said to be conjugate-self-dual if it satisfies

σ̃ ∼= σ. (4.9)

We recall that x 7→ x denotes the action of Gal(E/F ) on the representation σ of GL(m,E)
and σ denotes the corresponding action on σ. For σ conjugate-self-dual, we have

L(s, σ × σ̃) = L(s, σ × σ)

= L(s, σ, rA) · L(s, σ, rA ⊗ δE/F ), (4.10)

where the local L-functions on the right hand side are, as before, the Asai L-function and
its twist by the quadratic character δE/F . Again, the L-function on the left hand side of
(4.10) has a pole at s = 0 which implies that exactly one of those on the right hand side of
(4.10) has a pole at s = 0.
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Definition 4.11. An irreducible, unitary, supercuspidal representation σ of GL(m,F ) is
said to be η-symplectic if L(s, σ,∧2⊗η) has a pole at s = 0, and it is said to be η-orthogonal
if L(s, σ,Sym2 ⊗ η) has a pole at s = 0. When η = 1, then σ is simply called symplectic or
orthogonal.

Similarly, an irreducible, unitary, supercuspidal representation σ of GL(m,E) is said to
be conjugate-orthogonal if L(s, σ, rA) has a pole at s = 0, and it is said to be conjugate-
symplectic if L(s, σ, rA ⊗ δE/F ) has a pole at s = 0.

Note that if a representation σ of GL(m,F ) is either η-symplectic or η-orthogonal, then
(4.8) implies that σ is η-self-dual. Moreover, in the η-symplectic case, m must be even. In
the following theorem we use these notions with η = ω−1, where ω = ωπ denotes the central
character of a representation of G(F ). Similarly, if a representation σ of GL(m,E) is either
conjugate-symplectic or conjugate-orthogonal, then (4.10) implies that σ is conjugate-self-
dual.

Let G = G(n) be as in Section 2.1, i.e., G is one of the groups SO(2n+1), Sp(2n), SO(2n),
GSpin(2n+1), GSpin(2n), or SOE/F (2n),GSpinE/F (2n), or UE/F (2n+1),UE/F (2n), where

E/F is a quadratic extension. Let Ĝ denote the connected component of its Langlands L-

group LG. We define the type of Ĝ as follows:

G Ĝ type of Ĝ

SO(2n+ 1) Sp(2n,C) symplectic

Sp(2n) SO(2n+ 1,C) orthogonal

SO(2n) SO(2n,C) orthogonal

GSpin(2n+ 1) GSp(2n,C) symplectic

GSpin(2n) GSO(2n,C) orthogonal

SOE/F (2n) SO(2n,C) orthogonal

GSpinE/F (2n) GSO(2n,C) orthogonal

UE/F (2n) GL(2n,C) (conjugate) symplectic

UE/F (2n+ 1) GL(2n+ 1,C) (conjugate) orthogonal

Theorem 4.12. Let n ≥ 0 and m ≥ 1 be integers. Let G = G(n) and E/F be as before. Let
σ be an irreducible, unitary, supercuspidal representation of GL(m,F ) if G is orthogonal
or symplectic type, or of GL(m,E) when G is unitary. Let π be an irreducible, generic,
unitary, supercuspidal representation of G(n, F ) with central character ω = ωπ. Consider
τ = σ ⊗ π, an irreducible, generic, unitary, supercuspidal representation of M(F ), where
M = GL(m) × G(n) or M = ResE/F GL(m) × G(n), as appropriate, is a standard Levi
subgroup of a maximal parabolic subgroup P in the larger quasi-split group G(m + n). Let
I(τ) = I(σ ⊗ π) be the induced representation of G(m+ n, F ) as in (2.11).

If P is not self-associate (cf. Remark 2.4), then I(τ) is irreducible .
If P is self-associate, then for G orthogonal, symplectic or a general spin group, we have

the following statements:

(a) If σ is not ω−1-self-dual, then I(σ ⊗ π) is irreducible.

(b) If σ is ω−1-self-dual and of the type opposite to Ĝ, then I(σ ⊗ π) is irreducible.
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(c) If σ is ω−1-self-dual and of the same type as Ĝ, then I(σ ⊗ π) is irreducible if and
only if σ appears as a component of the transfer of π to GL(N,F ) as in Theorem
3.2. In particular, if m > N, then I(σ ⊗ π) is always reducible.

Analogously, for G unitary, we have the following statements:

(d) If σ is not conjugate-self-dual, then I(σ ⊗ π) is irreducible.

(e) If σ is conjugate-self-dual and of the type opposite to Ĝ, then I(σ⊗π) is irreducible.

(f) If σ is conjugate-self-dual and of the same type as Ĝ, then I(σ ⊗ π) is irreducible
if and only if σ appears as a component of the transfer of π to GL(N,E) as in
Theorem 3.2. In particular, if m > N, then I(σ ⊗ π) is always reducible.

Proof. The theorem essentially follows from Corollary 2.14 combined with the local transfer
results Theorem 3.2 as we now explain.

If P is not self-associate, then clearly w0(τ) 6∼= τ and I(τ) is irreducible by Corollary 2.14.
Next, assume that P is self-associate. We then have

w0(σ ⊗ π) ∼= σ̃ · ωπ ⊗ π. (4.13)

when G is orthogonal, symplectic, or a general spin group. Similarly,

w0(σ ⊗ π) ∼= σ̃ ⊗ π. (4.14)

when G is unitary (cf. Lemma 4.17).
Therefore, if G is orthogonal or symplectic type and σ is not ω−1-self-dual, or if G is

unitary and σ is not conjugate-self-dual, then w0(σ ⊗ π) 6∼= σ ⊗ π, and part (a) of Corollary
2.14 implies that I(σ ⊗ π) is irreducible. This proves statements (a) and (d).

Now, let G = G(n) = SO(2n+1) or GSpin(2n+1) and let M = GL(m)×G(n) as a Levi

in G(m + n). Then Ĝ is of symplectic type. Consider the case of n ≥ 1 (non-Siegel Levi)
first. Assume that σ is ω−1-self-dual. Then σ is either ω−1-orthogonal or ω−1-symplectic

(cf. Definition 4.11). If σ is of the type opposite to Ĝ, then σ is ω−1-orthogonal, which
means that the local L-function L(s, σ,Sym2 ⊗ ω−1) has a pole at s = 0. This local L-
function is the second L-function appearing in Theorem 2.13 or part (b) of Corollary 2.14.

On the other hand, if σ is of the same type as Ĝ, then it is ω−1-symplectic and, hence,
L(s, σ,∧2 ⊗ ω−1) has a pole at s = 0 and L(s, σ,Sym2 ⊗ ω−1) does not. Now, the other
(first) L-function in part (b) of Corollary 2.14 would have a pole at s = 0 if and only if σ
appears as a component in the transfer Π of π. To see this, note that the other L-function
is

L(s, σ̃ × π) = L(s, σ̃ ×Π) =

d∏
i=1

L(s, σ̃ ×Πi), (4.15)

where Πi’s are the components of the transfer Π of π as in Theorem 3.2.
If n = 0, the group G(0) is either trivial in which case π is trivial, or isomorphic to GL(1)

in which case π = ωπ is just a character. This is the Siegel Levi case and in this case only one
L-function, L(s, σ,Sym2 ⊗ ω−1), appears in Corollary 2.14. The above argument still holds
in the following sense. If σ is ω−1-orthogonal, then the first (and only) local L-function
in Corollary 2.14 has a pole at s = 0 and I(σ ⊗ π) is irreducible. If σ is ω−1-symplectic,
then I(σ ⊗ π) is reducible. Neither does any L-function in Corollary 2.14 have a pole at
s = 0, nor does σ appear as a component of transfer Π of π. This proves (b) and (c) for
G = G(n) = SO(2n+ 1) or GSpin(2n+ 1).

Next, let G = G(n) = SO(2n), GSpin(2n) or their quasi-split forms. A similar argument

as above again holds, except that Ĝ is now of orthogonal type and if σ is of the type opposite

to Ĝ, then it is ω−1-symplectic, which means that the local L-function L(s, σ,∧2⊗ω−1) has
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a pole at s = 0. Now, this is the second L-function appearing in part (b) of Corollary 2.14.

And if σ is of the same type at Ĝ, then it is σ−1-orthogonal and, hence, L(s, σ,Sym2⊗ω−1)
has a pole at s = 0 and L(s, σ,∧2 ⊗ ω−1) does not. Now, in a similar way, the other L-
function in part (b) of Corollary 2.14 would have a pole at s = 0 if and only if σ appears
as a component of the transfer Π of π. When n = 0 a similar situation occurs with one one
local L-function appearing again.

When G = G(n) = Sp(2n), the above paragraph holds again. The difference is just that
the transfer Π is a representation of GL(2n+ 1, F ). When n ≥ 1 there are two L-functions,
namely, L(s, σ × π) and L(s, σ,∧2). When n = 0, there are actually again two L-functions
appearing, namely, L(s, σ) (the standard L-function) which does not produce any poles at
s = 0, and L(s, σ,∧2) which behaves the same way as above.

Hence, we have proved parts (b) and (c) for G = Sp(2n),SO(2n),GSpin(2n) and their
quasi-split forms.

Finally, let G = G(n) = UE/F (2n) or UE/F (2n+ 1) and assume that the representation
σ of GL(m,E) is conjugate-self-dual. Then σ is either conjugate-orthogonal or conjugate-
symplectic (cf. Definition 4.11).

Consider G = UE/F (2n) first. Now, Ĝ is (conjugate) symplectic. If σ is of type opposite

to Ĝ, then it is conjugate-orthogonal, which means that the local Asai L-function L(s, σ, rA)
has a pole at s = 0. This L-function is the second L-function appearing in Theorem 2.13

or part (b) of Corollary 2.14. On the other hand, if σ is of the same type as Ĝ, then it
is conjugate-symplectic and, hence, L(s, σ, rA ⊗ δE/F ) has a pole at s = 0 and L(s, σ, rA)
does not. Now, in a similar way as above, the other L-function in part (b) of Corollary 2.14
would have a pole at s = 0 if and only if σ appears as a component of the transfer Π of π.

The argument for G = UE/F (2n + 1) is exactly the same with the words (conjugate)
symplectic and (conjugate) orthogonal switched.

Therefore, we have also proved (e) and (f) for G = UE/F (2n) and UE/F (2n+ 1), which
finishes the proof of the theorem. �

Remark 4.16. It is worth pointing out that in the case of G = GSp(2n), if the representation
σ is ω−1-self-dual, then ω = 1 (cf. [41, p. 286]). The case of non-trivial ω may occur for
general spin groups.

Lemma 4.17. Let m and n be non-negative integers and let G = G(m + n) and E/F
be as before. Let θ = ∆ − {α}, where ∆ denotes the set of simple roots of G and α is a
fixed simple root. Consider the standard maximal parabolic subgroup P = Pθ = MN with
the Levi M ∼= GL(m)×G(n) if G is one of the non-unitary groups we are considering, or
M ∼= ResE/F GL(m) × G(n) if G is unitary. Let w0 be the unique element in the Weyl
group of G such that w0(θ) ⊂ ∆ and w0(α) < 0. We assume that P is self-associate, i.e.,
w0(θ) = θ (cf. Remark 2.4).

Let σ be a representation of GL(m,F ), or of GL(m,E) when G is unitary, and let π be
a representation of G(n, F ).

Then,
w0(σ ⊗ π) ∼= σ̃ ⊗ π.

when G = SO(2n+ 1),SO(2n), or SOE/F (2n), and

w0(σ ⊗ π) ∼= σ̃ · ωπ ⊗ π.
when G = GSpin(2n+ 1),GSpin(2n), or GSpinE/F (2n).

For G = UE/F (2n) or UE/F (2n+ 1), we have

w0(σ ⊗ π) ∼= σ̃ ⊗ π.
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Proof. One verifies this lemma by considering the effect of conjugation by the Weyl group
element w0 on an element of the Levi M. For special orthogonal, symplectic, or unitary
groups, we can do this by a standard matrix calculation, noting that the action of w0 is to
simply switch the upper left m×m block with the lower right block of the same size in the
usual matrix representation of these groups.

For the general spin groups essentially the same observation works, except that one
expresses it in terms of root data due to lack of a convenient matrix realization and follows
the action of the Weyl group element w0. Let us give some details for this case.

Consider G = G(m+n) = GSpin(2m+ 2n+ 1). Using the Bourbaki notation, a detailed
description of the root data for G is given in [7, §1] which we use below. Let

X = Z〈e0, e1, . . . , em+n〉 (4.18)

and

X∨ = Z〈e∗0, e∗1, . . . , e∗m+n〉 (4.19)

denote the character and cocharacter lattices of G, respectively, with the standard Z-pairing.
With the simple roots ∆ = {α1, . . . , αm+n} and the simple coroots ∆∨ = {α∨1 , . . . , α∨m+n}
defined as in [7, §1], we have θ = ∆− {αm} with w0 as in Section 2.1. Let M = Mθ be the
maximal standard Levi subgroup corresponding to θ.Then

M ∼= GL(m)×G(n) (4.20)

with X = X1 ⊕X2 and X∨ = X∨1 ⊕X∨2 , where

X1 = Z〈e1, . . . , em〉 X2 = Z〈e0, em+1, . . . , em+n〉 (4.21)

and

X∨1 = Z〈e∨1 , . . . , e∨m〉 X∨2 = Z〈e∨0 , e∨m+1, . . . , e
∨
m+n〉. (4.22)

Now if we translate the action of w0 on the root data from M to GL(m) ×G(n) via the
isomorphism (4.20), we can conclude that for m = (A, g) with A ∈ GL(m) and g ∈ G(n)
we have

w0(m) = (µ · tA−1, g), (4.23)

where µ = e0(g) is the “similitude character”. This proves the statement of the lemma in
this case.

The case of even general spin groups is similar. However, in the even case (4.23) holds
provided that we are in the self-associate case (cf. Remark 2.4). This proves the lemma. �

4.2. Reducibility off the Unitary Axis. Theorem 4.12 determines the reducibility of
representations of classical groups induced from unitary, generic, supercuspidal representa-
tion of a maximal Levi in a satisfactory way. The analogous question for when the inducing
representation is non-unitary is fortunately reduced to the unitary case thanks to the fol-
lowing rather general theorem, a well-known result in the Langlans-Shahidi method (cf. [39,
Theorem 8.1] or [41, Theorem 5.1], for example.)

Theorem 4.24. Let G, P = MN, τ = σ ⊗ π and w0 be as before. Assume that w0(τ) ∼= τ
and that I(τ) is irreducible. Let i = 1 or 2 be the unique index such that L(s, τ, r̃i) has a
pole at s = 0 as in Corollary 2.14. Then, the induced representation I(s, τ) of (2.10) is

(a) irreducible for 0 < s < 1/i.
(b) reducible for s = 1/i.
(c) irreducible for s > 1/i.

If w0(τ) ∼= τ and I(τ) reduces, then I(s, τ) is irreducible for s > 0.
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Recall that for the groups we are considering, we always have i = 1 or i = 2. Hence, the
reducibility point of the induced representation I(s, τ) is always at either s = 1/2 or s = 1,
if any, in the region s > 0. In Section 4.3 we specify these reducibility points for each group
individually.

Moreover, we also recall, as one checks easily using the roots of G in each case, that the
following equalities are immediate from (2.10):

I(s, τ) =


I (νsσ ⊗ π) if G(n) is of type A (unitary),

I (νsσ ⊗ π) if G(n) is of type B or D and n ≥ 1,

I
(
νs/2σ ⊗ π

)
if G(n) is of type B or D and n = 0,

I (νsσ ⊗ π) if G(n) is of type C.

(4.25)

Here, ν = |det| denotes the p-adic absolute value of the determinant character on GL(m,F )
(or GL(m,E) as the case may be). When we summarize our reducibility results for each
individual group in Section 4.3, we will state them in terms of det rather than α̃ in (2.10).

4.3. Reducibility for Groups of Classical Type. We now summarize our results on
reducibility points of the induced representations for each of the groups we consider in this
article. Below F continues to denote a non-archimedean local field of characteristic zero
and, when appropriate, E/F denotes a quadratic extension, as before.

Proposition 4.26. Reducibility for SO(2n+ 1).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of GL(m,F ).
Let n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal representation of
SO(2n+ 1, F ). Let I(s) = Ind (|det |sσ ⊗ π) denote the parabolically induced representation
of SO(2m+ 2n+ 1, F ). The following hold:

• If σ is not self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is self-dual and L(s, σ,Sym2) has a pole at s = 0, then I(s) is irreducible for

0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for s > 1/2. (The reducibility
point is the same whether n = 0 or n ≥ 1.)

• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0 and n = 0, then I(s) is reducible for
s = 0 and irreducible for s > 0.

• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0, n ≥ 1, and σ appears as a component
of the transfer of π to GL(2n, F ), then I(s) is irreducible for 0 ≤ s < 1, reducible
for s = 1, and irreducible for s > 1.

• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0, n ≥ 1 and σ does not appear as a
component of the transfer of π, then I(s) is reducible for s = 0 and irreducible for
s > 0.

Proposition 4.27. Reducibility for GSpin(2n+ 1).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of GL(m,F ).
Let n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal representation of
GSpin(2n + 1, F ) with central character ω = ωπ. Let I(s) = Ind (|det |sσ ⊗ π) denote the
parabolically induced representation of GSpin(2m+ 2n+ 1, F ). The following hold:

• If σ is not ω−1-self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is ω−1-self-dual and L(s, σ,Sym2 ⊗ ω−1) has a pole at s = 0, then I(s) is

irreducible for 0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for s > 1/2. (The
reducibility point is the same whether n = 0 or n ≥ 1.)

• If σ is ω−1-self-dual, L(s, σ,∧2 ⊗ ω−1) has a pole at s = 0 and n = 0, then I(s) is
reducible for s = 0 and irreducible for s > 0.
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• If σ is ω−1-self-dual, L(s, σ,∧2⊗ω−1) has a pole at s = 0, n ≥ 1, and σ appears as a
component of the transfer of π to GL(2n, F ), then I(s) is irreducible for 0 ≤ s < 1,
reducible for s = 1, and irreducible for s > 1.

• If σ is ω−1-self-dual, L(s, σ,∧2 ⊗ ω−1) has a pole at s = 0, n ≥ 1 and σ does not
appear as a component of the transfer of π, then I(s) is reducible for s = 0 and
irreducible for s > 0.

Proposition 4.28. Reducibility for Sp(2n).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of GL(m,F ).
Let n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal representation of
Sp(2n, F ). Let I(s) = Ind (|det |sσ ⊗ π) denote the parabolically induced representation of
Sp(2m+ 2n, F ). The following hold:

• If σ is not self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is self-dual and L(s, σ,∧2) has a pole at s = 0, then I(s) is irreducible for

0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for s > 1/2. (The reducibility
point is the same whether n = 0 or n ≥ 1.)

• If σ is self-dual, L(s, σ,Sym2) has a pole at s = 0 and n = 0, then I(s) is reducible
for s = 0 and irreducible for s > 0.

• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0, n ≥ 1, and σ appears as a component
of the transfer of π to GL(2n, F ), then I(s) is irreducible for 0 ≤ s < 1, reducible
for s = 1, and irreducible for s > 1.

• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0, n ≥ 1 and σ does not appear as a
component of the transfer of π, then I(s) is reducible for s = 0 and irreducible for
s > 0.

Proposition 4.29. Reducibility for G(n) = SO(2n) or SOE/F (2n).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of GL(m,F ). Let
n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal representation of G(n, F ).
Let I(s) = Ind (|det |sσ ⊗ π) denote the parabolically induced representation of G(m+n, F ).

If n = 0 and m is odd, i.e., non-self-associate parabolic (cf. Remark 2.4), then I(s) is
always irreducible. Otherwise, the following hold:

• If σ is not self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is self-dual and L(s, σ,∧2) has a pole at s = 0, then I(s) is irreducible for

0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for s > 1/2. (The reducibility
point is the same whether n = 0 or n ≥ 1.)

• If σ is self-dual, L(s, σ,Sym2) has a pole at s = 0 and n = 0, then I(s) is reducible
for s = 0 and irreducible for s > 0.

• If σ is self-dual, L(s, σ,Sym2) has a pole at s = 0, n ≥ 1, and σ appears as a
component of the transfer of π to GL(2n, F ), then I(s) is irreducible for 0 ≤ s < 1,
reducible for s = 1, and irreducible for s > 1.

• If σ is self-dual, L(s, σ,Sym2) has a pole at s = 0, n ≥ 1 and σ does not appear as
a component of the transfer of π, then I(s) is reducible for s = 0 and irreducible for
s > 0.

Proposition 4.30. Reducibility for G(n) = GSpin(2n) and GSpinE/F (2n).

Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of GL(m,F ). Let
n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal representation of G(n, F )
with central character ω = ωπ. Let I(s) = Ind (|det |sσ ⊗ π) denote the parabolically induced
representation of G(m+ n, F ).
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If n = 0 and m is odd, i.e., non-self-associate parabolic (cf. Remark 2.4), then I(s) is
always irreducible. Otherwise, the following hold:

• If σ is not ω−1-self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is ω−1-self-dual and L(s, σ,∧2⊗ω−1) has a pole at s = 0, then I(s) is irreducible

for 0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for s > 1/2. (The reducibility
point is the same whether n = 0 or n ≥ 1.)

• If σ is ω−1-self-dual, L(s, σ,Sym2 ⊗ ω−1) has a pole at s = 0 and n = 0, then I(s)
is reducible for s = 0 and irreducible for s > 0.

• If σ is ω−1-self-dual, L(s, σ,Sym2⊗ω−1) has a pole at s = 0, n ≥ 1, and σ appears as
a component of the transfer of π to GL(2n, F ), then I(s) is irreducible for 0 ≤ s < 1,
reducible for s = 1, and irreducible for s > 1.

• If σ is ω−1-self-dual, L(s, σ,Sym2 ⊗ ω−1) has a pole at s = 0, n ≥ 1 and σ does
not appear as a component of the transfer of π, then I(s) is reducible for s = 0 and
irreducible for s > 0.

Proposition 4.31. Reducibility for G(n) = UE/F (2n) and UE/F (2n+ 1).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of GL(m,E). Let
n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal representation of G(n, F ).
We may consider σ⊗ π as a representation of M(F ), where M ∼= ResE/F GL(m)×G(n) is
a maximal Levi subgroup in G(m+n). Let I(s) = Ind (|det |sσ ⊗ π) denote the parabolically
induced representation of G(m+ n, F ). The following hold:

• If σ is not conjugate-self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is conjugate-self-dual and L(s, σ, rA) has a pole at s = 0 when G(n) = UE/F (2n)

or L(s, σ, rA ⊗ δE/F ) has a pole at s = 0 when G(n) = UE/F (2n + 1), then I(s) is
irreducible for 0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for s > 1/2. (The
reducibility point is the same whether n = 0 or n ≥ 1.)

• If σ is conjugate-self-dual, L(s, σ, rA ⊗ δE/F ) has a pole at s = 0 when G(n) =
UE/F (2n) or L(s, σ, rA) has a pole at s = 0 when G(n) = UE/F (2n+1), and n = 0,
then I(s) is reducible for s = 0 and irreducible for s > 0.

• If σ is conjugate-self-dual, L(s, σ, rA ⊗ δE/F ) has a pole at s = 0 when G(n) =
UE/F (2n) or L(s, σ, rA) has a pole at s = 0 when G(n) = UE/F (2n+1), n ≥ 1, and σ
appears as a component of the transfer of π to GL(2n, F ) when G(n) = UE/F (2n) or
to GL(2n+ 1, F ) when G(n) = UE/F (2n+ 1), then I(s) is irreducible for 0 ≤ s < 1,
reducible for s = 1, and irreducible for s > 1.

• If σ is conjugate-self-dual, L(s, σ, rA ⊗ δE/F ) has a pole at s = 0 when G(n) =
UE/F (2n) or L(s, σ, rA) has a pole at s = 0 when G(n) = UE/F (2n + 1), n ≥ 1,
and σ does not appear as a component of the transfer of π, then I(s) is reducible
for s = 0 and irreducible for s > 0.

We remark that some of the L-function conditions in the above propositions can also be
restated in other ways such as conditions on the parity of the integer m.
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[35] G. Muić. A proof of Casselman-Shahidi’s conjecture for quasi-split classical groups. Canad. Math.

Bull. 44 (2001), no. 3, 298–312.
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