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Abstract. We give a complete description of the image of the endoscopic functorial

transfer of generic automorphic representations from the quasi-split general spin groups

to general linear groups over arbitrary number fields. This result is not covered by
the recent work of Arthur on endoscopic classification of automorphic representations of

classical groups. The image is expected to be the same for the whole tempered spectrum,

whether generic or not, once the transfer for all tempered representations is proved. We
give a number of applications including estimates toward the Ramanujan conjecture for

the groups involved and the characterization of automorphic representations of GL(6)

which are exterior square transfers from GL(4), among others. More applications to
reducibility questions for the local induced representations of p-adic groups will also

follow.

1. Introduction

The purpose of this article is to completely determine the image of the transfer of globally
generic, automorphic representations from the quasi-split general spin groups to the general
linear groups. We prove the image is an isobaric, automorphic representation of a general
linear group. Moreover, we prove that the isobaric summands of this representation have
the property that their twisted symmetric square or twisted exterior square L-function has
a pole at s = 1, depending on whether the transfer is from an even or an odd general spin
group. We are also able to determine whether the image is a transfer from a split group, or
a quasi-split, non-split group.

Arthur’s recent book on endoscopic classification of representations of classical groups
[Ar] establishes similar results for automorphic representations of orthogonal and symplectic
groups, generic or not, but does not cover the case of the general spin groups we consider
here.

To describe our results in more detail, let k be a number field and let A = Ak denote
its ring of adèles. Let G be the split group GSpin(2n + 1), GSpin(2n), or one of its quasi-
split non-split forms GSpin∗(2n) associated with a quadratic extension K/k (cf. Section 2).
There is a natural embedding

ι : LG −→ GL(2n,C)× Γk (1.1)

of the L-group of G, as a group over k, into that of GL(2n) described in Section 3. Let
π be a globally generic, (unitary) cuspidal, automorphic representation of G = G(A). For
almost all places v of k the local representation πv is parameterized by a homomorphism

φv : Wv −→ LGv, (1.2)

where Wv is the local Weil group of kv and LGv is the L-group of G as a group over
kv. Langlands Functoriality then predicts that there is an automorphic representation Π of
GL(2n,A) such that for almost all v, the local representation Πv is parameterized by ι ◦φv.

Our main result is to prove that the transferred representation Π of GL(2n), from either
an even or an odd general spin group, is indeed an isobaric, automorphic representation
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(cf. Theorem 4.20 and its corollary). We then give a complete description of the image of
these transfers in terms of the twisted symmetric square or exterior square L-functions (cf.
Theorem 4.26). We refer to [L1] for the notion of isobaric representations.

To prove that the image is isobaric, one needs to know some of the analytic properties
of the Rankin-Selberg type L-functions L(s, π × τ), where τ is a cuspidal representation of
GL(m,A) and π is a generic representation of G(A). In particular, one needs to know that
the L-functions for G×GL(m) for m up to 2n are holomorphic for <(s) > 1 and to know
under what conditions these L-function have poles at s = 1. These facts are established in
Section 4. Here, we use a result on possible poles of the Rankin-Selberg L-functions for
G × GL(m) (Proposition 4.9) which we establish in [ACS1] as part of a more extensive
project. Consequently, we are able to prove that the transferred representation Π is unique;
it is an isobaric sum of pairwise inequivalent, unitary, cuspidal, automorphic representations

Π = Π1 � · · ·� Πt, (1.3)

and each Πi satisfies the condition that its twisted symmetric square or twisted exterior
square L-function has a pole at s = 1, depending on whether we are transferring from even

or odd general spin groups (cf. Theorem 4.26). In particular, we prove that Π ∼= Π̃⊗ω (and

not just nearly equivalent as we showed in [AS1]). Here, Π̃ denotes the contragredient of Π.
The automorphic representations Π of GL(2n,A) which are transfers from representations

π of general spin groups satisfy

Π ∼= Π̃⊗ ω, (1.4)

as predicted by the theory of twisted endoscopy [KoSh]. In fact, these representations
comprise precisely the image of the transfer. While we prove half of this statement, we note
that the other half of this, i.e., the fact that any representation of GL(2n,A) satisfying (1.4)
is a transfer from a representation of a general spin group has now also been proved thanks
to the work of J. Hundley and E. Sayag [HS1, HS2], extending the descent theory results
of Ginzburg, Rallis, and Soudry [GRS] from the case of classical groups (ω = 1) to general
spin groups .

If a representation Π of GL(2n,A) satisfies (1.4), then

LT
(
s,Π× (Π⊗ ω−1)

)
= LT (s,Π,Sym2 ⊗ ω−1)LT (s,Π,∧2 ⊗ ω−1), (1.5)

where T is a sufficiently large finite set of places of k and LT denotes the product over v 6∈ T
of the local L-functions. The L-function on the left hand side of (1.5) has a pole at s = 1,
which implies that one, and only one, of the two L-functions on the right hand side of (1.5)
has a pole at s = 1. If the twisted exterior square L-function has a pole at s = 1, then Π is
a transfer from an odd general spin group and if the twisted symmetric square L-function
has a pole at s = 1, then Π is a transfer from an even general spin group (which may be
split or quasi-split non-split).

To tell the split and quasi-split non-split cases apart, note that from (1.4) we have

ω2
Π = ω2n. (1.6)

In other words, µ = ωΠω
−n is a quadratic idèle class character. If µ is the trivial character,

then Π is the transfer of a generic representation of the even split general spin group and if
µ is a non-trivial quadratic character, then Π is a transfer from a generic representation of
a quasi-split group associated with the quadratic extension of k determined by µ through
class field theory.

Our results here along with those of Hundley and Sayag [HS1, HS2] give a complete
description of the image of the transfer for the generic representations of the general spin
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groups. It remains to study the transfers of non-generic, cuspidal, automorphic represen-
tations of the general spin groups, which our current method cannot handle. However, the
image of the generic spectrum is conjecturally the full image of the tempered spectrum,
generic or not, of the general spin groups since each tempered L-packet is expected to con-
tain a generic member. We refer to [Sh6] for more details on this conjecture. We point out
that Arthur’s upcoming book [Ar] would answer this question in the case of classical groups.
However, his book does not cover the case of general spin groups.

While we characterize the automorphic representation Π in the image, we should remark
that the existence of Π in the case of the split groups GSpin(2n) and GSpin(2n + 1) was
established in [AS1]. However, we were not able to prove the quasi-split case then. One
of our results, therefore, is also to establish the transfer of globally generic, automorphic
representations from the quasi-split non-split even general spin group, GSpin∗(2n,Ak), to
GL(2n,Ak) (cf. Theorem 3.5). The quasi-split case had to wait because the local technical
tools of “stability of γ-factors” (cf. Proposition 3.15) and a result on local L-functions
and normalized intertwining operators (Proposition 3.13) were not available in the quasi-
split non-split case. The local result is now available in our cases thanks to the thesis of
Wook Kim [WKim], and more generally the work of Heiermann and Opdam [HO], and the
stability of γ-factors is available in appropriate generality thanks to a recent work of Cogdell,
Piatetski-Shapiro and Shahidi [CPSS1].

As in the split case, the method of proving the existence of an automorphic representation
Π is to use converse theorems. This requires knowledge of the analytic properties of the
L-functions for GL(m)×GL(2n) for m ≤ 2n− 1. The two local tools allow us to relate the
L-functions for G×GL from the Langlands-Shahidi method to those required in the converse
theorems in the following way. Due to the lack of the local Langlands correspondence in
general, there is no natural choice for the local components of our candidate representation
Π at the finite number of exceptional places of k where some of our data may be ramified.
This means that we have to pick these local representations essentially arbitrarily. However,
we show that the local γ-factors appearing will become independent of the representation,
depending only on the central character, if we twist by a highly ramified character. Glob-
ally we can afford to twist our original representation by an idèle class character which is
highly ramified at a finite number of places. With this technique we succeed in applying
an appropriate version of the converse theorems. The conclusion is to have an automorphic
representation Π of GL(2n,A) which is locally the transfer of π associated with ι outside
a finite number of finite places. Moreover, if ω = ωπ is the central character of π, then
ωΠ = ωnµ, where µ is a quadratic idèle class character, only non-trivial in the quasi-split
non-split case. In that case it determines the defining quadratic extension. This settles the
existence of Π as an automorphic representation in all cases, whose complete description we
give, as we explained above.

We summarize the results on Π being isobaric and its description in terms of twisted
symmetric or exterior square L-functions in Theorem 4.26.

These results allow us to give a number of applications. As a first application, we are able
to describe the local component of the transferred representation at the ramified places. In
particular, we show that these local components are generic (cf. Proposition 5.1).

Another application is to prove estimates toward the Ramanujan conjecture for the
generic spectrum of the general spin groups. We do this by using the best estimates cur-
rently known for the general linear groups [LRS]. In particular, our estimates show that
if we know the Ramanujan conjecture for GL(m) for m up to 2n, then the Ramanujan
conjecture for the generic spectrum of GSpin(2n+ 1) and GSpin(2n) follows. We note that
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the Ramanujan conjecture is expected not to hold for certain non-generic representations of
the general spin groups.

Yet another application of our main results is to give more information about H. Kim’s
exterior square transfer from GL(4) to GL(6) with the help of some recent work of J. Hundley
and E. Sayag. We prove that a cuspidal representation Π of GL(6) is in the image of Kim’s
transfer if and only if the (partial) twisted symmetric square L-function of Π has a pole at
s = 1 (cf. Proposition 5.10).

We can apply our results in this paper, along with those of Cogdell, Kim, Krishnamurthy,
Piatetski-Shapiro, and Shahidi for the classical and unitary groups, to give some uniform
results on reducibility of local induced representations of non-exceptional p-adic groups. We
will address this question along with other local applications of generic functoriality in a
forthcoming paper [ACS2].

We would like to thank J. Cogdell for many helpful discussions on the material in this
article. We are also grateful to the referee for comments that helped improve the presentation
and precision.

Parts of this work were done while the authors were visiting The Erwin Schrödinger
Institute for Mathematical Physics (ESI) and the Institute for Research in Fundamental
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09–1–0049 and H-98230–11–1–0149, an Alexander von Humboldt Fellowship, and grant #
245422 from the Simons Foundation. The second author was partially supported by NSF
grants DMS–0700280 and DMS–1162299.
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2. The Preliminaries

Let k be a number field and let A = Ak be the ring of adèles of k. Let n ≥ 1 be an
integer. We consider the general spin groups. The group GSpin(2n+1) is a split, connected,
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reductive group of type Bn defined over k whose dual group is GSp(2n,C). Similarly, the
split, connected, reductive group GSpin(2n) over k is of type Dn and its dual is isomorphic
to GSO(2n,C), the connected component of the group GO(2n,C). There are also quasi-
split non-split groups GSpin∗(2n) in the even case. They are of type 2Dn and correspond
to quadratic extensions of k. A more precise description is given below. We also refer to
[CPSS2, §7] for a review of the generalities about these quasi-split groups.

We fix a Borel subgroup B and a Cartan subgroup T ⊂ B. The associated based root
datum to (B,T) will be denoted by (X,∆, X∨,∆∨), which we further explicate below. Our
choice of the notation for the root data below is consistent with the Bourbaki notation [Bou].

2.1. Structure of GSpin Groups. We describe the odd and even GSpin groups by intro-
ducing a based root datum for each as in [Spr, §7.4.1]. More detailed descriptions can also
be found in [AS1, §2] and [HS2, §4]. We use these data as our tools to work with the groups
in question due to the lack of a convenient matrix representation.

2.1.1. The root datum of GSpin(2n + 1). The root datum of GSpin(2n + 1) is given by
(X,R,X∨, R∨), where X and X∨ are Z-modules generated by generators e0, e1, · · · , en and
e∗0, e

∗
1, · · · , e∗n, respectively. The pairing

〈 , 〉 : X ×X∨ −→ Z (2.1)

is the standard pairing. Moreover, the roots and coroots are given by

R = R2n+1 = {±(ei ± ej) : 1 ≤ i < j ≤ n} ∪ {±ei | 1 ≤ i ≤ n} (2.2)

R∨ = R∨2n+1 =
{
±(e∗i − e∗j ) : 1 ≤ i < j ≤ n

}
∪ (2.3){

±(e∗i + e∗j − e∗0) : 1 ≤ i < j ≤ n
}
∪ {±(2e∗i − e∗0) | 1 ≤ i ≤ n}

along with the bijection R −→ R∨ given by

(±(ei − ej))∨ = ±(e∗i − e∗j ) (2.4)

(±(ei + ej))
∨ = ±(e∗i + e∗j − e∗0) (2.5)

(±ei)∨ = ±(2e∗i − e∗0). (2.6)

It is easy to verify that the conditions (RD 1) and (RD 2) of [Spr, §7.4.1] hold. Moreover,
we fix the following choice of simple roots and coroots:

∆ = {e1 − e2, e2 − e3, · · · , en−1 − en, en} , (2.7)

∆∨ =
{
e∗1 − e∗2, e∗2 − e∗3, · · · , e∗n−1 − e∗n, 2e∗n − e∗0

}
. (2.8)

This datum determines the group GSpin(2n+ 1) uniquely, equipped with a Borel subgroup
containing a maximal torus.

2.1.2. The root datum of GSpin(2n). Next, we give a similar description for the even case.
The root datum of GSpin(2n) is given by (X,R,X∨, R∨) where X and X∨ and the pairing
is as above and the roots and coroots are given by

R = R2n = {±(ei ± ej) : 1 ≤ i < j ≤ n} (2.9)

R∨ = R∨2n =
{
±(e∗i − e∗j ) : 1 ≤ i < j ≤ n

}
∪ (2.10){

±(e∗i + e∗j − e∗0) : 1 ≤ i < j ≤ n
}

along with the bijection R −→ R∨ given by

(±(ei − ej))∨ = ±(e∗i − e∗j ) (2.11)

(±(ei + ej))
∨ = ±(e∗i + e∗j − e∗0). (2.12)
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It is easy again to verify that the conditions (RD 1) and (RD 2) of [Spr, §7.4.1] hold. Similar
to the odd case we fix the following choice of simple roots and coroots:

∆ = {e1 − e2, e2 − e3, · · · , en−1 − en, en−1 + en} , (2.13)

∆∨ =
{
e∗1 − e∗2, e∗2 − e∗3, · · · , e∗n−1 − e∗n, e∗n−1 + e∗n − e∗0

}
. (2.14)

This based root datum determines the split group GSpin(2n) uniquely, equipped with a
Borel subgroup containing a maximal torus.

2.1.3. The quasi-split forms of GSpin(2n). In the even case, quasi-split non-split forms also
exist. We fix a splitting (B,T, {xα}α∈∆), where {xα} is a collection of root vectors, one
for each simple root of T in B. The quasi-split forms of GSpin(2n) over k are in one-
one correspondence with homomorphisms from Gal(k̄/k) to the group of automorphisms of
the character lattice preserving ∆. This group has two elements: the trivial and the one
switching en−1−en and en−1 +en while keeping all other simple roots fixed (cf. [HS2, §4.3],
and [CPSS2, §7.1] for the quasi-split forms of SO(2n)).

By Class Field Theory such homomorphisms correspond to quadratic characters

µ : k×\A×k −→ {±1}. (2.15)

When µ is non-trivial we denote the associated quasi-split non-split group with GSpinµ(2n)
or simply GSpin∗(2n) when the particular µ is unimportant. We will also denote the qua-
dratic extension of k associated with µ by Kµ/k or simply K/k.

3. Weak Transfer for the Quasi-split GSpin(2n)

In this section, n ≥ 1 will be an integer and G = GSpin∗(2n) will denote one of the
quasi-split non-split forms of GSpin(2n) as in 2.1.3. We will denote the associated quadratic
extension by K/k and A = Ak will continue to denote the ring of adèles of k. Also, G is
associated with a non-trivial quadratic character µ : k×\A×k −→ {±1}.

The connected component of the L-group of G is LG0 = GSO(2n,C) and the L-group
can be written as

LG = GSO(2n,C) oWk, (3.1)

where the Weil group acts through the quotient

Wk/WK
∼= Gal(K/k). (3.2)

The L-group of GL(2n) is GL(2n,C)×Wk, a direct product because GL(2n) is split. These
are the Weil forms of the L-group, or we can equivalently use the Galois forms of the
L-groups.

We define a map

ι : GSO(2n,C) o Γk −→ GL(2n,C)× Γk (3.3)

(g, γ) 7→

{
(g, γ) if γ|K = 1,

(hgh−1, γ) if γ|K 6= 1,

where γ ∈ Γk, g ∈ GSO(2n,C) ⊂ GL(2n,C), and

h = h−1 =


In−1

0 1
1 0

In−1

 . (3.4)

(We refer to [CPSS2, §7.1] for more details.) The map ι is an L-homomorphism. We also
have a compatible family of local L-homomorphisms ιv : LGv −→ GL(2n,C) ×Wv. Our
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purpose in this section is to prove the existence of a weak transfer of globally generic, cuspi-
dal, automorphic representations of G = G(A) to automorphic representations of GL(2n,A)
associated with ι.

Theorem 3.5. Assume that n ≥ 1 is an integer. Let K/k be a quadratic extension of
number fields and let G = GSpin∗(2n) be as above. Let ψ be a non-trivial continuous
additive character of k\Ak. The choice of ψ and the splitting above defines a non-degenerate
additive character of U(k)\U(A), again denoted by ψ.

Let π = ⊗vπv be an irreducible, globally ψ-generic, cuspidal, automorphic representation
of G = G(Ak). Write ψ = ⊗vψv. Let S be a non-empty finite set of non-archimedean places
v of k such that for every non-archimedean v 6∈ S both πv and ψv, as well as Kw/kv for w|v,
are unramified. Then there exists an automorphic representation Π = ⊗vΠv of GL(2n,Ak)
such that for all v 6∈ S the homomorphism parameterizing the local representation Πv is
given by

Φv = ιv ◦ φv : Wkv → GL(2n,C),

where Wkv denotes the local Weil group of kv and φv : Wkv −→ LG is the homomorphism
parameterizing πv. Moreover, if ωΠ and ωπ denote the central characters of Π and π,
respectively, then ωΠ = ωnπµ, where µ is the non-trivial quadratic idèle class character

corresponding to K/k, the quadratic extension defining G. Furthermore, Π and Π̃⊗ ωπ are
nearly equivalent.

Remark 3.6. We proved an analogous result for the split groups GSpin(2n+1) and GSpin(2n)
in [AS1].

To prove the theorem we will use a suitable version of the converse theorems of Cogdell
and Piatetski-Shapiro [CPS1, CPS2]. The exact version we need can be found in [CPSS2, §2]
which we quickly review below. Next we introduce an irreducible, admissible representation
Π of GL(2n,A) as a candidate for the transfer of π. We then prove that Π satisfies the
required conditions of the converse theorem and hence is automorphic. Along the way we
also verify the remaining properties of Π stated in Theorem 3.5.

3.1. The Converse Theorem. Let k be a number field and fix a non-empty finite set S
of non-archimedean places of k. For each integer m let

A0(m) = {τ |τ is a cuspidal representation of GL(m,Ak)} (3.7)

and
AS0 (m) = {τ ∈ A0(m)|τv is unramified for all v ∈ S} . (3.8)

Also, for a positive integer N let

T (N − 1) =

N−1∐
m=1

A0(m) and T S(N − 1) =

N−1∐
m=1

AS0 (m) (3.9)

and for η a continuous character of k×\A×k let

T (S; η) = T S(N − 1)⊗ η =
{
τ = τ ′ ⊗ η|τ ′ ∈ T S(N − 1)

}
. (3.10)

For our purposes we will apply the following theorem with N = 2n.

Theorem 3.11. (Converse theorem of Cogdell and Piatetski-Shapiro) Let Π = ⊗Πv be an
irreducible, admissible representation of GL(N,Ak) whose central character ωΠ is invariant
under k× and whose L-function

L(s,Π) =
∏
v

L(s,Πv)
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is absolutely convergent in some right half plane. Let S be a finite set of non-archimedean
places of k and let η be a continuous character of k×\A×. Suppose that for every τ ∈ T (S; η)
the L-function L(s, τ ×Π) is nice, i.e., it satisfies the following three conditions:

(1) L(s, τ ×Π) and L(s, τ̃ × Π̃) extend to entire functions of s ∈ C.

(2) L(s, τ ×Π) and L(s, τ̃ × Π̃) are bounded in vertical strips.

(3) The functional equation L(s, τ ×Π) = ε(s, τ ×Π)L(s, τ̃ × Π̃) holds.

Then there exists an automorphic representation Π′ of GL(N,Ak) such that Πv
∼= Π′v for

all v 6∈ S. 2

The twisted L- and ε-factors in the statement are those in [CPS1]. In particular, they
are Artin factors and known to be the same as the ones coming from the Langlands-Shahidi
method at all places.

3.2. L-functions for GL(m) × GSpin∗(2n). Let π be an irreducible, admissible, globally
generic representation of GSpin∗(2n,Ak) and let τ be a cuspidal representation of GL(m,Ak)
with m ≥ 1. The group GSpin∗(2(m+n)) has a standard maximal Levi GL(m)×GSpin∗(2n)
and we have the completed L-functions

L(s, τ × π) =
∏
v

L(s, τv × πv) =
∏
v

L(s, τv ⊗ πv, ι′v ⊗ ιv) = L(s, τ ⊗ π, ι′ ⊗ ι), (3.12)

with similar ε- and γ-factors, defined via the Langlands-Shahidi method in [Sh3]. Here, ι is
the representation of the L-group of GSpin∗(2n) we described before and ι′ is the projection
map onto the first factor in the L-group LGL(m) = GL(m,C)×Wk.

Proposition 3.13. Let S be a non-empty finite set of finite places of k and let η be a
character of k×\A×k such that, for some v ∈ S, η2

v is ramified. Then for all τ ∈ T (S; η) the
L-function L(s, τ × π) is nice, i.e., it satisfies the following three conditions:

(1) L(s, τ × π) and L(s, τ̃ × π̃) extend to entire functions of s ∈ C.
(2) L(s, τ × π) and L(s, τ̃ × π̃) are bounded in vertical strips.
(3) The functional equation L(s, τ × π) = ε(s, τ × π)L(s, τ̃ × π̃) holds.

Proof. Twisting by η is necessary for conditions (1) and (2). Both (2) and (3) hold in wide
generality.

Condition (2) follows from [GS, Cor. 4.5] and is valid for all τ ∈ T (N − 1), provided
that one removes neighborhoods of the finite number of possible poles of the L-function.
Condition (3) is a consequence of [Sh3, Thm. 7.7] and is valid for all τ ∈ T (N − 1).

Condition (1) follows from a more general result, [KS1, Prop. 2.1]. Note that this result
rests on Assumption 1.1 of [KS1], sometimes called Assumption A [K1], on certain normal-
ized intertwining operators being holomorphic and non-zero. Fortunately the assumption
has been verified in our cases. The assumption requires two ingredients: the so-called “stan-
dard modules conjecture” and the “tempered L-functions conjecture”. Both of these have
been verified in our cases in Wook Kim’s thesis [WKim]. For results proving various cases of
this assumption we refer to [Sh3, CSh, MuSh, Mu, A, K3, Hei, KK]. Recently V. Heiermann
and E. Opdam have proved the assumption in full generality in [HO]. �

The key now is to relate the L-functions L(s, τ × π), defined via the Langlands-Shahidi
method, to the L-functions L(s,Π × τ) in the converse theorem. We note that, when we
introduce our candidate for Π, for archimedean places and those non-archimedean places at
which all data are unramified we know the equality of the local L-functions. However, we
do not know this to be the case for ramified places. We get around this problem through
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stability of γ-factors, which basically makes the choice of local components of Π at the
ramified places irrelevant as long as we can twist by highly ramified characters.

3.3. Stability of γ-factors. In this subsection let F denote a non-archimedean local field
of characteristic zero. Let G = GSpin∗(2n, F ), where the quasi-split non-split group is
associated with a quadratic extension E/F .

Fix a non-trivial additive character ψ of F . Let π be an irreducible, admissible, ψ-generic
representation of G and let η denote a continuous character of GL(1, F ). Let γ(s, η × π, ψ)
be the associated γ-factor defined via the Langlands-Shahidi method [Sh3, Theorem 3.5].
We have

γ(s, η × π, ψ) =
ε(s, η × π, ψ)L(1− s, η−1 × π̃)

L(s, η × π)
. (3.14)

Proposition 3.15. Let π1 and π2 be two irreducible, admissible, ψ-generic representations
of G having the same central characters. Then for a suitably highly ramified character η of
GL(1, F ) we have

γ(s, η × π1, ψv) = γ(s, η × π2, ψv).

Proof. This is a special case of a more general theorem which is the main result of [CPSS1].
We note that in our case one has to apply that theorem to the self-associate maximal Levi
subgroup GL(1)×GSpin∗(2n) in GSpin∗(2n+2) which does satisfy the assumptions of that
theorem. �

3.4. The Candidate Transfer. We construct now a candidate global transfer Π = ⊗vΠv

as a restricted tensor product of its local components Πv, which are irreducible, admissible
representations of GL(2n, kv). There are three cases to consider: (i) archimedean v, (ii)
non-archimedean unramified v, (iii) non-archimedean ramified v.

3.4.1. The archimedean transfer. If v is an archimedean place of k, then by the local Lang-
lands correspondence [L2, Bor] the representation πv is parameterized by an admissible
homomorphism φv and we choose Πv to be the irreducible, admissible representation of
GL(2n, kv) parameterized by Φv as in the statement of Theorem 3.5. We then have

L(s, πv) = L(s, ιv ◦ φv) = L(s,Πv) (3.16)

and

ε(s, πv, ψv) = ε(s, ιv ◦ φv, ψv) = ε(s,Πv, ψv), (3.17)

where the middle factors are the local Artin-Weil L- and ε-factors attached to representations
of the Weil group as in [T]. The other L- and ε-factors are defined via the Langlands-Shahidi
method which, in the archimedean case, are known to be the same as the Artin factors
defined through the arithmetic Langlands classification [Sh1].

If τv is an irreducible, admissible representation of GL(m, kv), then it is parameterized
by an admissible homomorphism φ′v : Wkv −→ GL(m,C) and the tensor product homomor-
phism (ιv ◦ φv) ⊗ φ′v : Wkv −→ GL(2mn,C) is another admissible homomorphism and we
again have

L(s, πv × τv) = L(s, (ιv ◦ φv)⊗ φ′v) = L(s,Πv × τv) (3.18)

and

ε(s, πv × τv, ψv) = ε(s, (ιv ◦ φv)⊗ φ′v, ψv) = ε(s,Πv × τv, ψv). (3.19)

Hence, we get the following matching of the twisted local L- and ε-factors.
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Proposition 3.20. Let v be an archimedean place of k and let πv be an irreducible, admissi-
ble, generic representation of GSpin∗(2n, kv), Πv its local functorial transfer to GL(2n, kv),
and τv an irreducible, admissible, generic representation of GL(m, kv). Then

L(s, πv × τv) = L(s,Πv × τv), L(s, π̃v × τ̃v) = L(s, Π̃v × τ̃v)

and

ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).
2

3.4.2. The non-archimedean unramified transfer. If v is a non-archimedean place of k such
that πv, as well as all Kw/kv for w|v, are unramified, then by the arithmetic Langlands
classification or the Satake classification [Bor, Sat], the representation πv is parameterized
by an unramified admissible homomorphism φv : Wkv −→ LGv. Again we take Φv as in the
statement of the theorem. It defines an irreducible, admissible, unramified representation
Πv of GL(2n, kv) [HT, H1].

Given that πv is unramified, its parameter φv factors through an unramified homomor-
phism into the maximal torus LTv ↪→ LGv. Then Φv has its image in a torus of GL(2n,C)
and Πv is the corresponding unramified representation. We have

L(s, πv) = L(s,Πv) (3.21)

and

ε(s, πv, ψv) = ε(s,Πv, ψv) (3.22)

and the factors on either side of the above equations can be expressed as products of one-
dimensional abelian Artin factors by multiplicativity of the local factors.

Let τv be an irreducible, admissible, generic, unramified representation of GL(m, kv).
Again appealing to the general multiplicativity of local factors [JPSS, Sh3, Sh4] we have

L(s, πv × τv) = L(s,Πv × τv) (3.23)

and

ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv). (3.24)

Hence, we again get the following matching of the twisted local L- and ε-factors.

Proposition 3.25. Let v be a non-archimedean place of k and let πv be an irreducible, ad-
missible, generic, unramified representation of GSpin∗(2n, kv), Πv its local functorial trans-
fer to GL(2n, kv), and τv an irreducible, admissible, generic representation of GL(m, kv).
Then

L(s, πv × τv) = L(s,Πv × τv), L(s, π̃v × τ̃v) = L(s, Π̃v × τ̃v)
and

ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).
2

Proposition 3.25 is what is needed for the application of the converse theorem, establishing
that the global representation Π is automorphic. However, to prove further properties of Π,
we also make the local transfer in this case explicit. The analysis is similar to that of the
quasi-split SO(2n) carried out in [CPSS2, §7.2], which we refer to for more detail.

Let G = GSpin∗(2n), associated with the quadratic extension K/k of number fields. Let
µ be the associated quadratic idèle class character of k as in (2.15). Assume that v is a
non-archimedean place of k where all the data is unramified. There are two cases: either v
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splits as two places in K or v is inert, i.e., there is a single place in K above the place v in
k.

First, consider the case that v is inert in K and let w be the single place of K above v.
The maximal torus Tv in Gv is isomorphic to GL(1)n−1 ×T0, where T0

∼= GSpin∗(2) is a
non-split torus in Gv. We have Tv(kv) ∼= (k×v )n−1 ×K×w and the center of Gv(kv) sits as a
copy of k×v in K×w . The unramified representation πv is then determined by n−1 unramified
characters χ1, . . . , χn−1 of k×v along with a character χ̃n of K×w satisfying

χ̃n|k×v = ωπv
. (3.26)

Note that the χi’s are characters of k×v even though no v appears; they are not necessarily
local components of global idèle class characters.

The representation Πv of GL(2n, kv) is induced from(
χ1, . . . , χn−1, π

(
Ind

Wkv

WKw
χ̃n

)
, χ−1

n−1ωπv , . . . , χ
−1
1 ωπv

)
, (3.27)

where π
(

Ind
Wkv

WKw
χ̃n

)
is the Weil representation of GL(2, kv) defined by Ind

Wkv

WKw
χ̃n. (For a

quick review of its definition and properties, see [GL, Appendix B], for example.)

Being a Weil representation, the central character of π
(

Ind
Wkv

WKw
χ̃n

)
is equal to

µv · χ̃n|k×v = µv · ωπv
, (3.28)

where µv, the component of the global µ at v, is the generating character of k×v /NKw/kv (K×w ),

i.e., the non-trivial character of k×v which is trivial on norm elements, NKw/kv (K×w ). Hence,
the central character of Πv is equal to ωnπv

µv.

Moreover, by properties of the Weil representation, the contragredient of π
(

Ind
Wkv

WKw
χ̃n

)
is the Weil representation defined by Ind

Wkv

WKw
χ̃−1
n and

π̃
(

Ind
Wkv

WKw
χ̃n

)
⊗ ωπv

∼= π
(

Ind
Wkv

WKw
χ̃−1
n

)
⊗ ωπv

∼= π
(

Ind
Wkv

WKw
χ̃−1
n ·

(
ωπv ◦NKw/kv

))
∼= π

(
Ind

Wkv

WKw
χ̃n

)
. (3.29)

The last equivalence holds because

χ̃−1
n ·

(
ωπv ◦NKw/kv

)
= χ̃n

γ , (3.30)

or equivalently,

ωπv
◦NKw/kv = χ̃n · χ̃nγ , (3.31)

which immediately follows from (3.26). Here, γ denotes the non-trivial element of the Galois

group Gal(Kw/kv). Hence, Πv
∼= Π̃v ⊗ ωπv

.
Furthermore, we note that for the transferred representation Πv to be a principal series,

the character χ̃n must factor through the norm. Write χ̃n = χn◦NKw/kv with χn a character

of k×v . Then, (3.26) implies that χ2
n = ωπv

and the representation Πv is a constituent of the
representation of GL(2n, kv) induced from(

χ1, . . . , χn−1, χnµv, χ
−1
n ωπv , χ

−1
n−1ωπv , . . . , χ

−1
1 ωπv

)
. (3.32)

Next, consider the case that the place v splits in K. We have

Gv(kv) ∼= GSpin(2n, kv). (3.33)
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The unramified representation πv is given by n unramified characters χ1, . . . , χn of k×v along
with the central character ωπv .

The transferred representation Πv of GL(2n, kv) is now the same as in the case of the
split GSpin(2n) we treated in [AS1, Eq. (64)]. More precisely, the representation Πv is a
constituent of the representation of GL(2n, kv) induced from(

χ1, . . . , χn−1, χnµv, χ
−1
n ωπv

, χ−1
n−1ωπv

, . . . , χ−1
1 ωπv

)
, (3.34)

where µv, the component at v of the quadratic idèle class character µ associated with

the quadratic extension K/k is now trivial. Hence, we again have Πv
∼= Π̃v ⊗ ωv and

ωΠv
= ωnπv

µv.
Therefore, we have proved the following.

Proposition 3.35. Let v be a non-archimedean place of k and let πv be an irreducible,
admissible, generic, unramified representation of GSpin∗(2n, kv) with Πv its local functorial
transfer to GL(2n, kv) defined above. Then

ωΠv = ωnπv
µv

and

Πv
∼= Π̃v ⊗ ωπv .

Here, µv is a quadratic character of k×v associated with the quadratic extension defin-
ing GSpin∗(2n), i.e., the non-trivial character of k×v which is trivial on norm elements,
NKw/kv (K×w ). 2

3.4.3. The non-archimedean ramified transfer. For v a non-archimedean ramified place of k
we take Πv to be an arbitrary, irreducible, admissible representation of GL(2n, kv) whose
central character satisfies

ωΠv
= ωnπv

µv, (3.36)

where µv is the v-component of the quadratic idèle class character of k associated with the
quadratic extension K/k.

We can no longer expect equality of L- and ε-factors as in the previous cases. However,
we do still get equality if we twist by a highly ramified character thanks to stability of
γ-factors.

Proposition 3.37. Let v be a non-archimedean place of k such that the irreducible, ad-
missible, generic representation πv of GSpin∗(2n, kv) is ramified. Let Πv be an irreducible,
admissible representation of GL(2n, kv) as above. If τv = τ ′v ⊗ ηv is an irreducible, admis-
sible, generic representation of GL(m, kv) with τ ′v unramified and ηv a sufficiently ramified
character of GL(1, kv), then

L(s, πv × τv) = L(s,Πv × τv), L(s, π̃v × τ̃v) = L(s, Π̃v × τ̃v)

and

ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

Proof. The representation τ ′v can be written as a full induced principal series. Hence,

τv = Ind
(
νb1 ⊗ · · · ⊗ νbm

)
⊗ ηv = Ind

(
ηvν

b1 ⊗ · · · ⊗ ηvνbm
)
, (3.38)

where ν(·) = | · |v. By multiplicativity of the L- and ε-factors we have

L(s, πv × τv) =

m∏
i=1

L(s+ bi, πv × ηv) (3.39)
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and

ε(s, πv × τv, ψv) =

m∏
i=1

L(s+ bi, πv × ηv, ψv). (3.40)

Similarly,

L(s,Πv × τv) =

m∏
i=1

L(s+ bi,Πv × ηv) (3.41)

and

ε(s,Πv × τv, ψv) =

m∏
i=1

L(s+ bi,Πv × ηv, ψv). (3.42)

This reduces the proof to the case of m = 1.
Next, note that because ηv is sufficiently ramified (depending on πv) the L-functions

stabilize to one and we have

L(s, πv × ηv) ≡ 1 (3.43)

and

ε(s, πv × ηv, ψv) = γ(s, πv × ηv, ψv). (3.44)

On the other hand, by stability of gamma factors, Proposition 3.15, we may replace πv with
another representation with the same central character. Hence, for n arbitrary characters
χ1, χ2, . . . , χn, χ0 = ωπv and the quadratic character µv we have

γ(s, πv × ηv, ψv) =

(
n−1∏
i=1

γ(s, ηvχi, ψv)γ(s, ηvχ
−1
i χ0, ψv)

)
· γ(s, ηvχnµ, ψv)γ(s, ηvχ

−1
n χ0, ψv).

We refer to [AS1, §6] for more details in the split case. The calculations in the quasi-split
case are similar, the only difference being the appearance of the quadratic character µv.

We have similar relations also for the GL case. More precisely, because ωΠv
= χn0µ, by

[JS3, Proposition 2.2] we have

L(s,Πv × ηv) ≡ 1 (3.45)

and

ε(s,Πv × ηv, ψv) =

(
n−1∏
i=1

γ(s, ηvχi, ψv)γ(s, ηvχ
−1
i χ0, ψv)

)
· γ(s, ηvχnµ, ψv)γ(s, ηvχ

−1
n χ0, ψv). (3.46)

Note that this is a special case of the multiplicativity of the local factors. This gives the
equalities for the case of m = 1 and hence completes the proof. �

3.5. Proof of Theorem 3.5. Let ω denote the central character ωπ of π and let S be as
in the statement of Theorem 3.5. We let Π = ⊗vΠv with Πv the candidates we constructed
in 3.4.1–3.4.3. Also, let µ = ⊗vµv be a quadratic idèle class character associated, by class
field theory, with the quadratic extension K/k, where K is the quadratic extension of k over
which GSpin∗(2n) is split.

Choose an idèle class character η of k which is sufficiently ramified at places v ∈ S so
that the requirements of Propositions 3.13 and 3.15 are satisfied. We apply Theorem 3.11
to the representation Π and T (S; η) with S and η as above.
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By construction the central character ωΠ of Π is equal to ωnµ. Therefore, it is invariant
under k×. Moreover, by (3.16) and (3.21) we have

LS(s,Π) =
∏
v 6∈S

L(s,Πv) =
∏
v 6∈S

L(s, πv) = LS(s, π). (3.47)

This implies that L(s,Π) =
∏
v L(s,Πv) is absolutely convergent in some right half plane.

Furthermore, by Propositions 3.20, 3.25, and 3.37, we may verify the remaining properties
of being nice for the L-functions L(s,Π×τ) and the corresponding ε-factors, for τ ∈ T (S; η),
by establishing the similar properties for the L-functions L(s, π×τ) and their corresponding
ε-factors. Now the converse theorem can be applied thanks to Proposition 3.13 to conclude
that there exists an automorphic representation of GL(2n,Ak) whose local components at
v 6∈ S agree with those of Π. This automorphic representation is what we are calling Π in
the statement of the theorem.

Finally, by Proposition 3.35, outside the finite set S ∪ {v : v|∞}, the central character of
the automorphic representation Π agrees with the idèle class character ωnµ, which implies

that it is equal to ωnµ. The same proposition also gives that Πv
∼= Π̃v ⊗ ωπv

for v 6∈
S ∪ {v : v|∞}. This completes the proof. 2

4. The Transferred Representation

In this section k will continue to denote an arbitrary number field and A = Ak will denote
its ring of adèles.

Fix n ≥ 1 and let G = G(n) denote GSpin(2n + 1), the split GSpin(2n), or one of the
non-split quasi-split groups GSpin∗(2n) associated with a non-trivial quadratic extension K
of the number field k. We will refer to the case of G(n) = GSpin(2n + 1) as the odd case
and the remaining cases as the even case.

4.1. Low Rank Cases. Assume that n = 1. In these low rank cases, the transfers are
well-known. We quickly review them below before assuming n ≥ 2 in what follows.

(i) Odd General Spin Groups. The group GSpin(3) is isomorphic to GL(2) and the
transfer from GSpin(3) to GL(2) that we are dealing with is simply the identity.
Obviously, the L-functions are preserved in this case: L(s, π) = L(s,Π).

(ii) Even General Spin Groups. In the split case, the group GSpin(2) is isomorphic to a
two-dimensional split torus. A cuspidal automorphic representation π of GSpin(2,Ak)
is given by two unitary idèle class characters χ and ω. The dual of GSpin(2) embeds
in the diagonal of GL(2,C) with local unramified Satake parameters appearing as(

χv($v) 0
0 ωv($v)χ

−1
v ($v)

)
, (4.1)

where $v denotes a uniformizer at v. The transfer Π of π = πω,χ to GL(2,Ak) is
the appropriate constituent of

Ind
(
χ⊗ ωχ−1

)
, (4.2)

namely, the isobaric sum Π = χ � ωχ−1, which takes the local Langlands quotient
at each place when there is reducibility.

Next, consider the quasi-split non-split case with n = 1. Now, the group G is
GSpin∗(2), associated with a quadratic extension K of k and it contains a copy of
GL(1) over k as its “center”. (Note that G is simply ResK/kGL(1) and abelian.)

The L-group LG is isomorphic to GSO(2,C) o Γk with the embedding of it into
GL(2,C)× Γk as in (3.3) again.



IMAGE OF FUNCTORIALITY FOR GENERAL SPIN GROUPS 15

A cuspidal automorphic representation π of G(Ak) is given as an idèle class
character χ̃ of the quadratic extension K of k. Its restriction to the “center” is now
an idèle class character of k which we denote by ω. The transfer of π to GL(2,Ak)
is now given by

Π =
⊗
v

π
(

Ind
Wkv

WKv
χ̃v

)
, (4.3)

where Ind
Wkv

WKv
χ̃v = χ̃v ⊕ χ̃v when v splits in K (i.e., Kv = kv ⊕ kv), and it is the

Weil representation we described in Section 3.4.2 when v is inert in K. (See [GL,

Appendix C].) By our earlier local description, it is again clear that Π ∼= Π̃⊗ω and
ωΠ = ω · µ, where µ = µK/k is the quadratic idèle class character of k associated
with the extension K/k.

We may assume below that n ≥ 2.

4.2. The Global Transfer. Let π be a irreducible, globally generic, unitary, cuspidal,
automorphic representation of G(Ak). Let Π be a transfer of π to GL(2n,Ak) as in [AS1,
Theorem 1.1] and Theorem 3.5. By the classification of automorphic representations of
general linear groups [JS1, JS2] we know that Π is a constituent of some automorphic
representation

Σ = Ind (|det |r1σ1 ⊗ · · · ⊗ |det |rtσt) (4.4)

with σi a unitary, cuspidal, automorphic representation of GL(ni,Ak), ri ∈ R, and

n1 + n2 + · · ·+ nt = 2n. (4.5)

Let ω = ωπ denote the central character of π. Then ω is a unitary idèle class character

of k and we have shown that Π is nearly equivalent to Π̃⊗ ω.
Our first goal in this section is to prove the fact that all the exponents ri = 0 in (4.4).

We start by introducing a necessary Eisenstein series and proving a lemma (Lemma 4.11
below) about twisted exterior and symmetric (partial) L-functions.

4.2.1. Eisenstein Series. Let m and n denote positive integers and assume n ≥ 2. Let π
be a globally generic, unitary, cuspidal, automorphic representation of G(Ak) as before and
let τ be a unitary, cuspidal, automorphic representation of GL(m,Ak). Denote their central
characters by ω = ωπ and ωτ , respectively. We construct a certain Eisenstein series for a
representation induced from τ as follows.

Let H = H(m) be the split group GSpin(2m) if G = GSpin(2n+ 1) and GSpin(2m+ 1)
if G = GSpin(2n). In other words, H is of the opposite type to G. Consider the Siegel
parabolic Pm = MmNm in H(m) with Mm

∼= GL(m)×GL(1) and its representation

τs′;η = τ |det |s
′
⊗ η, (4.6)

where η is an appropriately chosen idèle class character. (The choice of η and the iso-
morphism between Mm and GL(m)×GL(1) are made in [ACS1] so that the Zeta integral
we consider there is well-defined and the desired L-functions appear in the constant term
of the Eisenstein series; see below.) Here, s′ = s − 1/2, with s ∈ C. (The shift in s is for
convenience here so that the parameter s appears in the Rankin-Selberg L-functions below.)

Extend τs′,η trivially across Nm(A) to obtain a representation of Pm(A). Consider the
normalized induced representation

ρs′;η = Ind
H(A)
Pm(A) (τs′;η ⊗ 1) . (4.7)
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For f = fτ,s′;η in this induced representation, construct the Eisenstein series

E(h, fτ,s′;η) =
∑

γ∈Pm(k)\H(k)

f(γh), h ∈ H(A). (4.8)

This Eisenstein series is absolutely convergent for <(s)� 0, has a meromorphic continuation
to all of C with a finite number of poles, the continuation is of moderate growth, and it
converges uniformly on compact subsets away from the poles. Moreover, it has a functional
equation relating its values at s′ and 1− s′.

The Eisenstein series, along with a cusp form in the space of π, appears in a certain
Zeta integral we consider in [ACS1]. In particular, we establish the following statement in
[ACS1], which we now borrow from that paper.

Proposition 4.9. With τ and π as before, if LS(s, π × τ) has a pole at s0 with <(s0) ≥ 1,
then, for a choice of fτ,s′;η, the Eisenstein series E(h, fτ,s′;η) has a pole at s = s0

The proposition is established by proving that the the Zeta integral in which it appears is
Eulerian and, up to a factor that can be made holomorphic and non-zero for an appropriate
choice of fτ,s′;η, is equal to the quotient of the Rankin-Selberg L-function LS(s, π × τ) and

either LS(2s, τ,∧2⊗ω−1) (when G is odd) or LS(2s, τ, Sym2⊗ω−1) (when G is even). We
carry out the details in [ACS1].

4.2.2. Twisted Symmetric and Exterior Square L-functions. We need a result on holomorphy
of twisted L-function in the half plane <(s) > 1. This result, and much more, is the subject
of two works, one by Dustin Belt in his thesis at Purdue University, and the other by Suichiro
Takeda.

Proposition 4.10. ([Blt] and [Tk]) Assume that m is an arbitrary positive integer. Let χ
be an arbitrary idèle class character and let τ be a unitary, cuspidal, automorphic represen-
tation of GL(m,A). Let S be a finite set of places of k containing all the archimedean places
and all the non-archimedean places at which τ ramifies. Then the partial twisted L-functions
LS(s, τ,∧2 ⊗ χ) and LS(s, τ, Sym2 ⊗ χ) are holomorphic in <(s) > 1.

We remark that Jacquet and Shalika proved that LS(s, τ,∧2 ⊗ χ) has a meromorphic
continuation to a half plane <(s) > 1− a with a > 0 depending on the representation [JS4,
§8, Theorem 1]. Proposition 4.10 in the case of ∧2 ⊗ ω can also be dug out of their work.
However, D. Belt’s results show this for all s, with possible poles at s = 0, 1.

As far as we know, an analogue of Jacquet-Shalika’s result for twisted symmetric square
was not available. For m = 3 it follows from the results of W. Banks [Bnk] following the
untwisted (χ = 1) results of Bump and Ginzburg [BG]. S. Takeda’s results build on this
line of work. In the case of χ = 1, N. Grbac has recently established a full theory of these
L-functions in [Gr].

Lemma 4.11. Assume that m is an arbitrary positive integer. Let τ be an irreducible,
unitary, cuspidal, automorphic representation of GL(m,A). Let ω be an idèle class character
and let s ∈ C. Let S be a finite set of places of k including all the archimedean ones such
all data is unramified outside S.

(a) Both LS(s, τ,∧2⊗ω−1) and LS(s, τ, Sym2⊗ω−1) are holomorphic and non-vanishing
for <(s) > 1.

(b) If either of the above L-functions has a pole at s = 1, then τ ∼= τ̃ ⊗ ω.

Proof. We have

LS(s, τ ⊗ (τ ⊗ ω−1)) = LS(s, τ,∧2 ⊗ ω−1)LS(s, τ, Sym2 ⊗ ω−1). (4.12)
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The left hand side is holomorphic and non-vanishing for <(s) > 1 by [JS2, Proposition
(3.6)]. Moreover, by Proposition 4.10 both of the L-functions on the right hand side are
holomorphic for <(s) > 1. Therefore, both are non-vanishing there, as well. This is part
(a).

On the other hand, by [Sh5, Theorem 1.1] both L-functions on the right hand side are
non-vanishing on <(s) = 1. If one has a pole at s = 1, then the left hand side must have
a pole at s = 1. Again by [JS2, Proposition (3.6)] the two representations τ and τ ⊗ ω−1

must be contragredient of each other, i.e., τ ∼= τ̃ ⊗ ω. This is part (b). �

Proposition 4.13. Assume that m is an arbitrary positive integer. Let τ be an irreducible,
unitary, cuspidal representation of GL(m,A). Fix s0 ∈ C with <(s0) ≥ 1 and assume that
the Eisenstein series E(h, fτ,s′;η) introduced in (4.8) has a pole at s = s0. Then, s0 = 1 and

LS(s, τ,∧2⊗ω−1) has a simple pole at s = 1 in the odd case while LS(s, τ, Sym2⊗ω−1) has
a simple pole at s = 1 in the even case.

Proof. We know from the general theory of Euler products of Langlands and the Langlands-
Shahidi method that the poles of E(h, fτ,s′;η) come from its constant term along Pm.

For a decomposable section f = fτ,s′;η = ⊗vf (v) the constant term of E(h, fτ,s′;η) along
Pm has the form

f(I) +
∏
v∈T

M
(
f (v)

) LT (2s− 1, τ,∧2 ⊗ ω−1)

LT (2s, τ,∧2 ⊗ ω−1)
(4.14)

in the odd case, and

f(I) +
∏
v∈T

M
(
f (v)

) LT (2s− 1, τ, Sym2 ⊗ ω−1)

LT (2s, τ, Sym2 ⊗ ω−1)
(4.15)

in the even case, where T is a finite set of places of k containing S.
We should recall that in the construction the Eisenstein series we used s − 1

2 in (4.6)
instead of the usual s. This is responsible for the appearance of 2s− 1 and 2s instead of the
usual 2s and 2s+ 1 in the constant term.

The terms M
(
f (v)

)
, the local intertwining operators at I, are holomorphic for <(s) ≥ 1

for all v [Sh2, Sh3]. Therefore, if E(h, fτ,s′;η) has a pole at s = s0, then

LT (2s− 1, τ,∧2 ⊗ ω−1)

LT (2s, τ,∧2 ⊗ ω−1)
(4.16)

has a pole at s = s0 in the odd case, or

LT (2s− 1, τ, Sym2 ⊗ ω−1)

LT (2s, τ, Sym2 ⊗ ω−1)
(4.17)

has a pole at s = s0 in the even case.
Assume that E(h, fτ,s′;η) does have a pole at s = s0 with <(s0) ≥ 1. Then <(2s0) ≥ 2

and by [KS2, Prop. 7.3] the denominator in both (4.16) and (4.17) is non-vanishing for
<(s) ≥ 1. Therefore, the numerator has a pole at s = s0. Because <(2s0 − 1) ≥ 1, Lemma
4.11 implies that s0 = 1 and the proof is complete. �

We use Proposition 4.9 in the proof of the following theorem.

Theorem 4.18. Assume that n ≥ 2 is an integer. Let π be an irreducible, unitary, globally
generic, cuspidal, automorphic representation of G(n,A). Let τ be an irreducible, unitary,
cuspidal, automorphic representation of GL(m,A). Assume that S is a sufficiently large
finite set of places including all the archimedean places of k.



18 MAHDI ASGARI AND FREYDOON SHAHIDI

(a) The L-function LS(s, π × τ) is holomorphic for <(s) > 1.
(b) If LS(s, π × τ) has a pole at s0 with <(s0) = 1, then s0 = 1 and LS(s, τ,∧2 ⊗ ω−1

π )
has a pole at s = 1 in the odd case and LS(s, τ, Sym2 ⊗ ω−1

π ) has a pole at s = 1 in
the even case. In particular, τ ∼= τ̃ ⊗ ωπ. Such a pole would be simple.

Remark 4.19. The partial L-functions in the above statements may be replaced by the
completed L-functions as Hundley and Sayag have pointed out in [HS2, §19.3]. The point
is that, using the description of generic unitary representations of the general linear groups
and analytic properties of local intertwining operators and L-functions, one can show that
the local twisted symmetric or exterior square L-functions above are holomorphic and non-
vanishing for <(s) ≥ 1. (They do it for the twisted symmetric square L-function and at
s = 1, but the same argument works for the twisted exterior square L-function and for
<(s) ≥ 1.) We thank the referee for this remark.

Proof. Assume that LS(s, π × τ) has a pole at s = s0 with <(s0) ≥ 1. By [KS2, Prop.
7.3] we know that both LS(s, τ,∧2 ⊗ ω−1

π ) and LS(s, τ, Sym2 ⊗ ω−1
π ) are holomorphic and

non-vanishing at s = 2s0. By Proposition 4.9, the Eisenstein series E(h, fτ,s′;η) must have a
pole at s = s0. Proposition 4.13 now implies that s0 = 1 and LS(s, τ,∧2 ⊗ ω−1) in the odd
case, or LS(s, τ, Sym2 ⊗ ω−1) in the even case, has a simple pole at s = 1. This proves (a)
and (b). �

4.3. Description of the Image of Transfer. We can now describe the image in general.

Theorem 4.20. Let π be an irreducible, globally generic, unitary, cuspidal, automorphic
representation of G(n,A) with central character ω = ωπ and let Π be a transfer of π to
GL(2n,A). Consider Π as a subquotient of Σ as in (4.4) with n1 + n2 + · · ·+ nt = 2n.

(a) We have r1 = r2 = · · · = rt = 0.
(b) The representations σi are pairwise inequivalent, and σi ∼= σ̃i⊗ω for all i. Moreover,

for S a sufficiently large finite set of places including all the archimedean ones, the
L-function LS(s, σi,∧2⊗ω−1) has a pole at s = 1 in the odd case, and the L-function
LS(s, σi,Sym2 ⊗ ω−1) has a pole at s = 1 in the even case.

Proof. By [AS1, Prop. 7.4] we know that Σ is induced from a representation of a Levi
subgroup of GL(2n) of type (a1, . . . , aq, b1 · · · , b`, aq, · · · , a1) which can be written as

δ1|det(·)|z1 ⊗ · · · ⊗ δq|det(·)|zq ⊗
σ1 ⊗ σ2 ⊗ · · · ⊗ σ`

⊗(δ̃q ⊗ ω−1)|det(·)|−zq ⊗ · · · (δ̃1 ⊗ ω−1)|det(·)|−z1 , (4.21)

where δi and σi are irreducible, unitary, cuspidal automorphic representations, σi ∼= σ̃i⊗ω,
and

2(a1 + · · ·+ aq) + (b1 + · · ·+ b`) = 2n. (4.22)

Assume that q > 0. Rearranging if necessary, we may assume <(z1) ≤ · · · ≤ <(zq) < 0.
Now, for S a sufficiently large finite set of places, we have

LS(s, π × δ̃1) = LS(s,Π× δ̃1)

=

q∏
i=1

LS(s+ zi, δi × δ̃1)LS(s− zi, δ̃i × δ̃1 ⊗ ω−1)

·
∏̀
i=1

LS(s, σi × δ̃1). (4.23)
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The first term on the right hand side has a pole at s = 1− z1 which can not be canceled by
the other terms because <(1− z1 ± zi) ≥ 1 and <(1− z1) > 1. Therefore, the left hand side
has a pole at s = 1− z1.

We can apply Theorem 4.18(a) to conclude that <(z1) ≥ 0. This is a contradiction proving
that q = 0, i.e., there are no δi’s. This proves part (a).

So far we have proved that Σ is induced from a representation of the form σ1⊗σ2⊗· · ·⊗σ`
satisfying σi ∼= σ̃i ⊗ ω.

Fix 1 ≤ j ≤ ` and consider

LS(s, π × σ̃j) = LS(s,Π× σ̃j) =
∏̀
i=1

LS(s, σi × σ̃j). (4.24)

The right hand side has a pole and hence, so does the left hand side. Moreover, the σi’s
are pairwise inequivalent because otherwise the left hand side of (4.24) would have a pole
of higher order. Since σi ∼= σ̃i ⊗ ω we can apply Theorem 4.18(b).

We conclude that the L-function LS(s, σi,∧2 ⊗ω−1) has a pole at s = 1 in the odd case,
and the L-function LS(s, σi,Sym2 ⊗ ω−1) has a pole at s = 1 in the even case. This proves
part (b). �

Corollary 4.25. The representation Σ is irreducible and Π = Σ = σ1 � · · · � σt is an

isobaric sum of the σi. In particular, the transfer Π of π is unique and Π ∼= Π̃⊗ω (not just
nearly equivalent as in [AS1, Theorem 1.1]).

Proof. The corollary immediately follows from the fact that r1 = · · · = rt = 0 and that
σi ∼= σ̃i ⊗ ω. �

We continue to denote by π an irreducible, globally generic, unitary, cuspidal, automor-
phic representation of G(n,A). We proved that π has a unique transfer Π, an irreducible,
generic, automorphic representation of GL(2n,A). Moreover, we have shown that ωΠ = ωnµ

and Π ∼= Π̃ ⊗ ω, where ω = ωπ denotes the central character of π, ωΠ denotes the central
character of Π, and µ is a quadratic idèle class character.

Furthermore, Theorem 4.20 gives an “upper bound” for the image of the transfer from
G(n) groups to GL(2n). Combining this with the “lower bound” provided by Hundley and
Sayag (when each ni is even) in [HS1, HS2] and Ginzburg, Rallis, and Soudry [GRS] (when
some ni is odd), cf. [HS1, Remark 2.1.1 (3)], we obtain the full description of the image of
this transfer. We summarize all these results as follows.

Theorem 4.26. Let k be a number field and let A = Ak be the ring of adèles of k. Assume
that n ≥ 1 is an integer. Denote by G(n) either the split GSpin(2n+1), the split GSpin(2n),
or one of the non-split quasi-split groups GSpin∗(2n) (associated with a quadratic extension
K/k.) Let π be an irreducible, globally generic, cuspidal, automorphic representation of
G(n,A) with central character ω = ωπ. Then π has a unique functorial transfer to an
automorphic representation Π of GL(2n,A) associated with the L-homomorphism ι described
in [AS1] (the split case) and Section 3 (the quasi-split non-split case). The transfer Π
satisfies

Π ∼= Π̃⊗ ω.
Moreover,

ωΠ = ωnπµ,

where µ is a quadratic idèle class character which is trivial in the split case and non-trivial
in the quasi-split non-split case. In fact, µ defines the quadratic extension of k over which
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(the non-split) GSpin∗(2n) splits. (The triviality or non-triviality of ωΠω
−n can tell apart

the split and quasi-split non-split cases.)
The automorphic representation Π is an isobaric sum of the form

Π = Ind (Π1 ⊗ · · · ⊗Πt) = Π1 � · · ·� Πt,

where each Πi is a unitary, cuspidal, automorphic representation of GL(ni,A) such that for
T a sufficiently large finite set of places of k containing the archimedean places, the partial
L-function LT (s,Πi,∧2⊗ω−1) has a pole at s = 1 in the odd case and LT (s,Πi,Sym2⊗ω−1)
has a pole at s = 1 in the even case (both split and quasi-split non-split cases). We have
Πi 6∼= Πj if i 6= j and n1 + · · ·+ nt = 2n.

Conversely, any automorphic representation Π of GL(2n,A) satisfying the above condi-
tions is a functorial transfer of some irreducible, globally generic, cuspidal, automorphic
representation π of G(n,A).

Again we should point out that the partial L-functions in the statement above may be
replaced by the completed L-functions (cf. Remark 4.19).

5. Applications

5.1. Local Representations at the Ramified Places. The local components of the
automorphic representation Π = ⊗vΠv are well understood for the archimedean v as well as
those non-archimedean v outside of the finite set S through our construction of the candidate
transfer. However, the converse theorem tells us nothing about Πv for v ∈ S. Having proved
Theorem 4.26 we can now get some information for these places as well. This shows that
while we did not have control over places v ∈ S, the automorphic representation Π does
indeed turn out to have the right local components in S.

Proposition 5.1. Let πv be an irreducible, admissible, generic representation of G(n, kv),
where v is a non-archimedean place of k. Assume that πv appears as the local component of a
globally generic cuspidal representation of G(n,Ak). Then, there exists a unique irreducible,
admissible, generic representation Πv of GL(2n, kv) which is the local transfer of πv in the
following sense:

If πv is the local component at v of any globally generic cuspidal automorphic represen-
tation π, then, as the name suggests, Πv is the local component at v of the unique transfer
Π of π to GL(2n,Ak) whose existence and uniqueness we established in Theorem 4.26.

To be more explicit, let πv be of the form

πv ∼= Ind
(
π1,v|det |b1,v ⊗ · · · ⊗ πr,v|det |br,v ⊗ π0,v

)
,

where each πi,v is a tempered representation of GL(ni, kv), b1,v > · · · > br,v and π0,v is a
tempered, generic representation of some smaller G(m, kv) with n1 + · · · + nr + m = n.
Denote the central character of πv by ωv. Then Πv is of the form

Πv
∼= Ind

(
(π1,v|det |b1,v ⊗ · · · ⊗ πr,v|det |br,v ⊗Π0,v⊗

(π̃r,v ⊗ ωv)|det |−br,v ⊗ · · · ⊗ (π̃1,v ⊗ ωv)|det |−b1,v
)
. (5.2)

Here, Π0,v appears only if m > 0. It is a tempered representation of GL(2m, kv) which is
the local transfer of Π0,v.

In particular, if S is the non-empty finite set of non-archimedean places in [AS1, Thm.
1.1.] or Theorem 3.5, then the local components Πv, v ∈ S, are uniquely determined by the
corresponding local components πv.
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Proof. The argument proceeds the same way as in the proof of [AS2, Prop. 2.5.], which
proved the analogous result for the case of GSp(4) = GSpin(5). We briefly mention the
steps for completeness.

Given πv, let π be as in the statement of the proposition and let Π be its unique transfer
to GL(2n,Ak). The fact that Π is an isobaric sum of unitary, cuspidal representations of
general linear groups, Theorem 4.26, implies that every local component of Π is generic and
full induced from tempered representations in the sense of the Langlands Classification. In
particular, so is Πv.

The first step is to show that

γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv)

for every supercuspidal representation ρv of GL(a, kv). To do this we “embed” the local
representation ρv in a unitary, cuspidal representation ρ of GL(a,A) whose other local
components are unramified [Sh3, Prop. 5.1] and apply the converse theorem with S′ =
S − {v} just as in [CKPSS2, Prop. 7.2]. Moreover, by multiplicativity of the γ-factors we
obtain the equality for ρv in the discrete series, as well.

Next, assume that πv is tempered. We claim that Πv is also tempered. Here again
the main tool is multiplicativity of the γ-factors and the proof is exactly as in [CKPSS2,
Lemma 7.1]. In addition to several applications of multiplicativity, it involves information
about generic unitary representations of the general linear groups, with the only different
ingredient in the general spin case being the so-called tempered L-function conjecture, that
the local L-functions for tempered representations are holomorphic for <(s) > 0. For the
general spin groups, this is available in [A], and even more generally in [HO]. This proves
the Proposition for r = 0.

Now consider the case of r > 0. Apply the case of r = 0 to πv = π0,v and take the resulting
tempered representation of GL(2m, kv) to be Π0,v. To show that this representation satisfies
the requirements of the proposition we use the converse theorem again. Let T = {w} consist
of a single non-archimedean place w 6= v at which π is unramified and consider the global
representation Π′ of GL(2n,A) whose local components are the same as those of Π outside of
T and Π′w is the irreducible, induced representations on the right hand side of (5.2). We can
apply the converse theorem, Theorem 3.11, to Π′ and T because L(s,Π′ × τ) = L(s, π × τ)
and similarly the contragredients as well as the ε-factors for all τ. The conclusion is that Π′

is a transfer of π (outside of T ) and by the uniqueness of the transfer, Theorem 4.26, we
have Π′v

∼= Πv for v ∈ S. This completes the proof. �

5.2. Ramanujan Estimates. Following [CKPSS2], we introduce the following notation.
Let Π = ⊗vΠv be a unitary, cuspidal, automorphic representation of GL(m,Ak). For
each place v the representation Πv is unitary generic and can be written as a full induced
representation

Πv
∼= Ind (Π1,v|det |a1,v ⊗ · · · ⊗Πr,v|det |ar,v ) (5.3)

with a1,v > · · · > ar,v and each Πi,v tempered.

Definition 5.4. We say Π satisfies H(θm) with θm ≥ 0 if for all places v we have

−θm ≤ ai,v ≤ θm.

The classification of the generic unitary dual of GL(m), [Td, V], trivially gives H(1/2).
The best result currently known for a general number field is θm = 1/2− 1/(m2 + 1) proved
in [LRS] with a few better results known for small values of m and over Q. The Ramanujan
conjecture for GL(m) demands H(0).



22 MAHDI ASGARI AND FREYDOON SHAHIDI

Similarly, if π = ⊗vπv is a unitary, generic, cuspidal, automorphic representation of
G(n,Ak) each πv can be written as a full induced representation

πv ∼= Ind
(
π1,v|det |b1,v ⊗ · · · ⊗ πr,v|det |br,v ⊗ τv

)
, (5.5)

where each πi,v is a tempered representation of some GL(ni, kv) and τv is a tempered,
generic representation of some G(m, kv) with n1 + · · ·+ nt +m = n.

Definition 5.6. We say π satisfies H(θn) with θn ≥ 0 if for all places v we have

−θm ≤ bi,v ≤ θm.

Again, we would have the bound H(1) trivially as a consequence of the classification of
the generic unitary dual and the Ramanujan conjecture demands H(0).

Proposition 5.7. Let k be a number field and assume that all the unitary, cuspidal, au-
tomorphic representations of GL(m,Ak) satisfy H(θm) for 2 ≤ m ≤ 2n. Then any globally
generic, unitary, cuspidal, automorphic representation π of G(n,Ak) satisfies H(θ), where
θ = max

2≤i≤2n
θi. In fact, if π transfers to a non-cuspidal representation Π = Π1 � · · · � Πt,

then π satisfies the possibly better bound of H(θ) where θ = max{θn1
, θn2

, . . . , θnt
}. Here,

Πi is a unitary, cuspidal representation of GL(ni,Ak).

Proof. The argument is exactly the same as the proof of [AS2, Theorem 3.3] and we do
not repeat it here. Note that our Proposition 5.1 is used for the ramified non-archimedean
places. �

Corollary 5.8. Every globally generic, unitary, cuspidal, automorphic representation π of
G(n,Ak) satisfy

H

(
4n2 − 1

2(4n2 + 1)

)
.

If π transfers to a non-cuspidal, automorphic representation

Π = Π1 � · · ·� Πt,

then we can replace n with the size of the largest GL block appearing, resulting in a better
estimate.

Proof. This is immediate if we combine Proposition 5.7 with the GL(m) estimate of 1/2−
1/(m2 + 1). �

We should remark that for small values of n it is possible to obtain better estimates
because much better estimates are available for small general linear groups (and also for
k = Q). For an example, see [AS2, §3.1]

Corollary 5.9. The Ramanujan conjecture for the unitary, cuspidal representations of
GL(m,Ak) for m ≤ 2n implies the Ramanujan conjecture for the generic spectrum of
G(n,Ak).

Proof. This is an immediate corollary of Proposition 5.7 where all the θ’s are zero. �

5.3. Image of Kim’s exterior square. H. Kim proved the exterior square transfer of
automorphic representations from GL(4,Ak) to GL(6,Ak) [K2, H2]. A. Raghuram and the
first author gave a complete cuspidality criterion for this transfer, determining when the
image of this transfer is not cuspidal [AR]. A natural question about the image of this
transfer is which automorphic representations of GL(6,Ak) are indeed in the image of this
transfer. We can now answer this question as an application of our Theorem 4.26.
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Proposition 5.10. Let Π be a cuspidal, automorphic representation of GL(6,Ak). Then
there is a cuspidal automorphic representation π of GL(4,Ak) such that Π = ∧2π if and only
if there is an idèle class character ω such that the partial L-function LS(s,Π,Sym2 ⊗ ω−1)
has a pole at s = 1 for S a sufficiently large finite set of places of k including all the
archimedean ones.

Proof. The proposition follows immediately from our Theorem 4.26 if we recall that Kim’s
exterior square transfer from GL(4) to GL(6) is a special case of the transfer in the split
even case of our theorem when m = 3, i.e., the transfer from GSpin(6) to GL(6) [AS1, Prop.
7.6].

If we assume that Π is the transfer of π, then we have proved that we can take ω =
ωπ, the central character of π. The opposite direction requires the descent method in
our cases and would follow from J. Hundley and E. Sayag’s “lower bound” result for our
transfer [HS1, HS2] because Kim’s ∧2 is a special case of transfer from GSpin(6) to GL(6)
as mentioned above. �

Another natural question regarding the image of Kim’s exterior square transfer is to
determine “the fiber” for each cuspidal Π which is indeed in the image. In other words,
determine all representations π such that Π = ∧2π.

A further interesting question would be to explore possible overlaps between various
transfers to cuspidal representations of GL(6). As pointed out in [CPSS2, §6] (for the
untwisted ω = 1 case) and as it is apparent from our Theorem 4.26 there can be no overlap
between the images of transfers from GSpin(7) and quasi-split forms of GSpin(6) (which
includes Kim’s transfer) to GL(6). However, there may be potential overlaps with the
transfer from unitary groups or the Kim-Shahidi transfer [KS1] from GL(2) × GL(3) to
GL(6).
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[Mu] G. Muić. A proof of Casselman-Shahidi’s conjecture for quasi-split classical groups. Canad. Math.
Bull. 44 (2001), no. 3, 298–312.
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[Td] Tadić. Classification of unitary representations in irreducible representations of general linear group
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